• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 10
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem farmacocinética populacional na avaliação do papel da glicoproteína-P na penetração tecidual de fluoroquinolonas / Population pharmacokinetic modeling on evaluation of role P-glycoprotein on fluoroquinolones tissue penetration

Zimmermann, Estevan Sonego January 2015 (has links)
Objetivos: O objetivo deste trabalho foi desenvolver modelo farmacocinético (popPK) populacional para descrever simultaneamente as concentrações das fluoroquinolonas (levofloxacino – LEV e ciprofloxacino – CIP) no plasma, pulmão e próstata na presença e ausência do inibidor da P-gp tariquidar (TAR) visando determinar a contribuição desse transportador de efluxo na distribuição tecidual desses antimicrobianos. Método: Para alcançar este objetivo as seguintes etapas foram realizadas: i) foi validado o método analítico de HPLC-fluorescência para quantificação de CIP em amostras de plasma e microdialisado; ii) foram estabelecidas as condições para microdiálise para o CIP e as taxas de recuperação in vitro, por diálise e retrodiálise, e em tecido pulmonar e prostático in vivo por retrodiálise; iii) foi avaliada a farmacocinética do LEV após administração a ratos Wistar via i.v. bolus e por nebulização intratraqueal na dose de 7mg/kg na ausência e após administração prévia de TAR (15 mg/Kg i.v.); iv) foi desenvolvido um modelo popPK para prever as concentrações do LEV simultaneamente no plasma, pulmão e próstata após administração intravenosa e intratraqueal na presença e ausência do TAR; v) foi desenvolvido o modelo popPK para descrever as concentrações de CIP simultaneamente no plasma, pulmão e próstata após administração a ratos Wistar da dose de 7 mg/kg i.v. bolus na presença e ausência de TAR (15 mg/kg i.v.); vi) Para ambos os fármacos os dados foram avaliados por análise não-compartimental e modelados por modelo de quatro compartimentos modificado, com ajuda do software NONMEN®. Resultados e Conclusões. i) Método analítico foi desenvolvido e validado com sucesso para quantificação de CIP em HPLC/fluorescência mostrando-se linear na faixa de 10–2000 ng/mL em plasma e 5–1000 ng/mL em microdialisado com coeficientes de determinação (r2) superiores a 0,99. Os valores obtidos de erro padrão relativo para ensaios de precisão intra e inter-dia foram entre 8,8 e 6,0 %, para microdialisado entre 11,1 e 7,4 % para plasma, respectivamente. Os valores de exatidão foram 86,1% entre 114.3% para microdialisado e 85,6% entre 108,2% para plasma; ii) A avaliação do CIP por microdiálise mostrou recuperação concentração independente (0,25 - 1,5 μg/mL). Além disso, não houve diferença entre as recuperações obtidas por diálise e retrodiálise para o mesmo fluxo. No fluxo selecionado para os experimentos (1,5 μL/min) as recuperações médias por diálise e retrodiálise foram 23,0 ± 2,8% e 22,8 ± 1,6 %, respectivamente. A recuperação relativa das sondas in vivo foi de 11,3 ± 1,9 e 13,1 ± 2,7 % para pulmão e próstata, respectivamente; iii) A análise dos perfis plasmáticos e teciduais LEV após dose intravenosa do grupo controle (sem TAR) mostrou boa penetração tecidual na próstata (ƒT = 0,68) e no pulmão (ƒT = 0,69). Para a mesma via de administração, o grupo TAR mostrou uma penetração praticamente inalterada para o pulmão (ƒT = 0,81) e um aumento de mais de 2 vezes na penetração prostática (ƒT= 1,64). Na dose intratraqueal houve um aumento significativo na biodisponibilidade para o grupo TAR (F = 0,86) em relação ao controle (F = 0,4). Nessa via de administração foi detectado um aumento significativo na exposição (ASC) do pulmão ao LEV no grupo TAR demonstrando que o transporte por efluxo no pulmão é mais relevante quando o fármaco é administrado pela via intratraqueal; iv) Para o LEV, o modelo popPK de quatro compartimentos foi capaz de descrever simultaneamente os dados no plasma, pulmão e próstata na presença e ausência do TAR. Além disso, o modelo para administração intravenosa foi estendido e adaptado para administração intratraqueal. Foi possível analisar o impacto do transporte por efluxo sobre a penetração tecidual do LEV por diferentes vias de administração utilizando o modelo popPK; v) A avaliação do perfil farmacocinético plasmático do CIP após administração intravenosa, na presença e ausência de TAR, demonstrou diferença significativa entre todos os parâmetros calculados por análise não-compartimental, exceto para a constante de velocidade de eliminação (= 0,05). Em relação à penetração tecidual do CIP na próstata e pulmão, não houve alteração significativa nos parâmetros de eliminação e exposição tecidual do fármaco na presença do inibidor de efluxo TAR ( = 0,05), demonstrando que o transporte por efluxo possui papel minoritário no processo de distribuição do fármaco para os tecidos estudados. O modelo popPK de quatro compartimentos foi capaz de descrever as concentrações plasmáticas totais, livres no pulmão e próstata em presença e ausência de TAR, simultaneamente; vi) O modelo popPK desenvolvido permitiu o estudo mais profundo do processo de distribuição do LEV e do CIP no pulmão e próstata. / Objectives: The aim of this study was to develop a population pharmacokinetic model (popPK) able to simultaneously describe fluoroquinolones (levofloxacin – LEV and ciprofloxacin – CIP) concentrations in plasma, lung and prostate in the presence and absence of the inhibitor of P-gp tariquidar (TAR) to determine the contribution of this efflux transporter on the tissue distribution of these antimicrobials. Methods: To achieve this goal the following steps were taken: i) An analytical method by HPLC-fluorescence was developed and validated for CIP analysis in plasma and microdialysate samples; ii) microdialysis conditions were established for CIP including determination of in vitro relative recovery by dialysis and retrodialysis. The relative recovery was also determined in vivo, in lung and prostate, by retrodialysis; iii) LEV pharmacokinetics was evaluated after intravenous (i.v.) bolus and intratracheal (i.t.) administration of 7 mg/kg dose alone and following TAR administration (15 mg/kg i.v.) to Wistar rats; iv) a popPK model was developed to describe and predict LEV concentrations in plasma, lung and prostate following i.v. and i.t. dosing with and without TAR co-administration; v) the popPK model developed was used to describe CIP concentrations in plasma, lung and prostate after i.v. bolus administration of 7 mg/kg in presence and absence of TAR; vi) For both drugs non-compartmental analysis was performed besides data modeling by four compartment model using NONMEN®. Results and Conclusions i) The analytical method was developed and successfully validated for quantification of CIP by HPLC/fluorescence. The method was linear in the range of 10-2000 ng/mL in plasma and 5-1000 ng/mL in tissues microdialysate samples with coefficients of determination (r2) higher than 0.99. The relative standard error (RSD) obtained for intra and inter-day precision were lower than 8.8% and 6.0% for microdialysate and lower than 11.1 and 7.4% for plasma, respectively. The accuracy was 86.1% to 114.3% for microdialysate and 85.6 to 108.2 % for plasma samples; ii) the evaluation of CIP microdialysis probes relative recovery in vitro showed that the recovery was concentration independent (0.25 to 1.5 μg/mL). In addition, there was no statistical difference between the recoveries determined by dialysis and retrodialysis at the same flow rate. Using the selected flow rate (1.5 μL/min) the recoveries by dialysis and retrodialysis were 23.0 ± 2.8% and 22.8 ± 1.6%, respectively. CIP relative recoveries in vivo by retrodialysis were 11.3 ± 1.9 and 13.1 ± 2.7% for lung and prostate, respectively; iii) the analysis of LEV plasma and tissues concentration-time profiles after i.v. dosing showed a good tissue penetration of LEV in the prostate (ƒT = 0.68) and lung (ƒT = 0.69). For the same route of administration, TAR group showed virtually the same penetration into lung (ƒT = 0.81) and an increase of over 2 fold in drug levels in prostate (ƒT = 1.64). For the i.t. dose, there was a significant increase on LEV bioavailability for TAR group (F = 0.86) compared to control (F = 0.4). Furthermore, a significant increase was detected on lung exposure to LEV for TAR group indicating that efflux transport in the lung is more relevant when the drug is administered by the i.t. route; iv) For LEV, a four compartment model was able to describe the data simultaneously in plasma, lung and prostate in the presence and absence of TAR. Moreover, the intravenous model was extended to adapt the intratracheal dosing route. The popPK model allowed to analyze the impact of efflux transport on tissue LEV penetration of different routes of administration; v) the evaluation of plasma CIP profiles after i.v. dosing with and without TAR showed a significant difference in all parameters determined by non-compartmental analysis in the TAR group, except the elimination rate constant (α = 0.05). The CIP tissue penetration in prostate and lung, no significant difference was observed in tissues exposure and elimination rate when TAR was present demonstrating that efflux transporter play a minor role on CIP distribution to tissues investigated (α = 0.05). The popPK model with four compartments was able to describe CIP concentrations in plasma, lung and prostate in the presence and absence of TAR, simultaneously; vi) the popPK model developed allowed a more detailed investigation of LEV and CIP distribution process in lung and prostate.
2

Modelagem farmacocinética populacional na avaliação do papel da glicoproteína-P na penetração tecidual de fluoroquinolonas / Population pharmacokinetic modeling on evaluation of role P-glycoprotein on fluoroquinolones tissue penetration

Zimmermann, Estevan Sonego January 2015 (has links)
Objetivos: O objetivo deste trabalho foi desenvolver modelo farmacocinético (popPK) populacional para descrever simultaneamente as concentrações das fluoroquinolonas (levofloxacino – LEV e ciprofloxacino – CIP) no plasma, pulmão e próstata na presença e ausência do inibidor da P-gp tariquidar (TAR) visando determinar a contribuição desse transportador de efluxo na distribuição tecidual desses antimicrobianos. Método: Para alcançar este objetivo as seguintes etapas foram realizadas: i) foi validado o método analítico de HPLC-fluorescência para quantificação de CIP em amostras de plasma e microdialisado; ii) foram estabelecidas as condições para microdiálise para o CIP e as taxas de recuperação in vitro, por diálise e retrodiálise, e em tecido pulmonar e prostático in vivo por retrodiálise; iii) foi avaliada a farmacocinética do LEV após administração a ratos Wistar via i.v. bolus e por nebulização intratraqueal na dose de 7mg/kg na ausência e após administração prévia de TAR (15 mg/Kg i.v.); iv) foi desenvolvido um modelo popPK para prever as concentrações do LEV simultaneamente no plasma, pulmão e próstata após administração intravenosa e intratraqueal na presença e ausência do TAR; v) foi desenvolvido o modelo popPK para descrever as concentrações de CIP simultaneamente no plasma, pulmão e próstata após administração a ratos Wistar da dose de 7 mg/kg i.v. bolus na presença e ausência de TAR (15 mg/kg i.v.); vi) Para ambos os fármacos os dados foram avaliados por análise não-compartimental e modelados por modelo de quatro compartimentos modificado, com ajuda do software NONMEN®. Resultados e Conclusões. i) Método analítico foi desenvolvido e validado com sucesso para quantificação de CIP em HPLC/fluorescência mostrando-se linear na faixa de 10–2000 ng/mL em plasma e 5–1000 ng/mL em microdialisado com coeficientes de determinação (r2) superiores a 0,99. Os valores obtidos de erro padrão relativo para ensaios de precisão intra e inter-dia foram entre 8,8 e 6,0 %, para microdialisado entre 11,1 e 7,4 % para plasma, respectivamente. Os valores de exatidão foram 86,1% entre 114.3% para microdialisado e 85,6% entre 108,2% para plasma; ii) A avaliação do CIP por microdiálise mostrou recuperação concentração independente (0,25 - 1,5 μg/mL). Além disso, não houve diferença entre as recuperações obtidas por diálise e retrodiálise para o mesmo fluxo. No fluxo selecionado para os experimentos (1,5 μL/min) as recuperações médias por diálise e retrodiálise foram 23,0 ± 2,8% e 22,8 ± 1,6 %, respectivamente. A recuperação relativa das sondas in vivo foi de 11,3 ± 1,9 e 13,1 ± 2,7 % para pulmão e próstata, respectivamente; iii) A análise dos perfis plasmáticos e teciduais LEV após dose intravenosa do grupo controle (sem TAR) mostrou boa penetração tecidual na próstata (ƒT = 0,68) e no pulmão (ƒT = 0,69). Para a mesma via de administração, o grupo TAR mostrou uma penetração praticamente inalterada para o pulmão (ƒT = 0,81) e um aumento de mais de 2 vezes na penetração prostática (ƒT= 1,64). Na dose intratraqueal houve um aumento significativo na biodisponibilidade para o grupo TAR (F = 0,86) em relação ao controle (F = 0,4). Nessa via de administração foi detectado um aumento significativo na exposição (ASC) do pulmão ao LEV no grupo TAR demonstrando que o transporte por efluxo no pulmão é mais relevante quando o fármaco é administrado pela via intratraqueal; iv) Para o LEV, o modelo popPK de quatro compartimentos foi capaz de descrever simultaneamente os dados no plasma, pulmão e próstata na presença e ausência do TAR. Além disso, o modelo para administração intravenosa foi estendido e adaptado para administração intratraqueal. Foi possível analisar o impacto do transporte por efluxo sobre a penetração tecidual do LEV por diferentes vias de administração utilizando o modelo popPK; v) A avaliação do perfil farmacocinético plasmático do CIP após administração intravenosa, na presença e ausência de TAR, demonstrou diferença significativa entre todos os parâmetros calculados por análise não-compartimental, exceto para a constante de velocidade de eliminação (= 0,05). Em relação à penetração tecidual do CIP na próstata e pulmão, não houve alteração significativa nos parâmetros de eliminação e exposição tecidual do fármaco na presença do inibidor de efluxo TAR ( = 0,05), demonstrando que o transporte por efluxo possui papel minoritário no processo de distribuição do fármaco para os tecidos estudados. O modelo popPK de quatro compartimentos foi capaz de descrever as concentrações plasmáticas totais, livres no pulmão e próstata em presença e ausência de TAR, simultaneamente; vi) O modelo popPK desenvolvido permitiu o estudo mais profundo do processo de distribuição do LEV e do CIP no pulmão e próstata. / Objectives: The aim of this study was to develop a population pharmacokinetic model (popPK) able to simultaneously describe fluoroquinolones (levofloxacin – LEV and ciprofloxacin – CIP) concentrations in plasma, lung and prostate in the presence and absence of the inhibitor of P-gp tariquidar (TAR) to determine the contribution of this efflux transporter on the tissue distribution of these antimicrobials. Methods: To achieve this goal the following steps were taken: i) An analytical method by HPLC-fluorescence was developed and validated for CIP analysis in plasma and microdialysate samples; ii) microdialysis conditions were established for CIP including determination of in vitro relative recovery by dialysis and retrodialysis. The relative recovery was also determined in vivo, in lung and prostate, by retrodialysis; iii) LEV pharmacokinetics was evaluated after intravenous (i.v.) bolus and intratracheal (i.t.) administration of 7 mg/kg dose alone and following TAR administration (15 mg/kg i.v.) to Wistar rats; iv) a popPK model was developed to describe and predict LEV concentrations in plasma, lung and prostate following i.v. and i.t. dosing with and without TAR co-administration; v) the popPK model developed was used to describe CIP concentrations in plasma, lung and prostate after i.v. bolus administration of 7 mg/kg in presence and absence of TAR; vi) For both drugs non-compartmental analysis was performed besides data modeling by four compartment model using NONMEN®. Results and Conclusions i) The analytical method was developed and successfully validated for quantification of CIP by HPLC/fluorescence. The method was linear in the range of 10-2000 ng/mL in plasma and 5-1000 ng/mL in tissues microdialysate samples with coefficients of determination (r2) higher than 0.99. The relative standard error (RSD) obtained for intra and inter-day precision were lower than 8.8% and 6.0% for microdialysate and lower than 11.1 and 7.4% for plasma, respectively. The accuracy was 86.1% to 114.3% for microdialysate and 85.6 to 108.2 % for plasma samples; ii) the evaluation of CIP microdialysis probes relative recovery in vitro showed that the recovery was concentration independent (0.25 to 1.5 μg/mL). In addition, there was no statistical difference between the recoveries determined by dialysis and retrodialysis at the same flow rate. Using the selected flow rate (1.5 μL/min) the recoveries by dialysis and retrodialysis were 23.0 ± 2.8% and 22.8 ± 1.6%, respectively. CIP relative recoveries in vivo by retrodialysis were 11.3 ± 1.9 and 13.1 ± 2.7% for lung and prostate, respectively; iii) the analysis of LEV plasma and tissues concentration-time profiles after i.v. dosing showed a good tissue penetration of LEV in the prostate (ƒT = 0.68) and lung (ƒT = 0.69). For the same route of administration, TAR group showed virtually the same penetration into lung (ƒT = 0.81) and an increase of over 2 fold in drug levels in prostate (ƒT = 1.64). For the i.t. dose, there was a significant increase on LEV bioavailability for TAR group (F = 0.86) compared to control (F = 0.4). Furthermore, a significant increase was detected on lung exposure to LEV for TAR group indicating that efflux transport in the lung is more relevant when the drug is administered by the i.t. route; iv) For LEV, a four compartment model was able to describe the data simultaneously in plasma, lung and prostate in the presence and absence of TAR. Moreover, the intravenous model was extended to adapt the intratracheal dosing route. The popPK model allowed to analyze the impact of efflux transport on tissue LEV penetration of different routes of administration; v) the evaluation of plasma CIP profiles after i.v. dosing with and without TAR showed a significant difference in all parameters determined by non-compartmental analysis in the TAR group, except the elimination rate constant (α = 0.05). The CIP tissue penetration in prostate and lung, no significant difference was observed in tissues exposure and elimination rate when TAR was present demonstrating that efflux transporter play a minor role on CIP distribution to tissues investigated (α = 0.05). The popPK model with four compartments was able to describe CIP concentrations in plasma, lung and prostate in the presence and absence of TAR, simultaneously; vi) the popPK model developed allowed a more detailed investigation of LEV and CIP distribution process in lung and prostate.
3

Modelagem farmacocinética populacional na avaliação do papel da glicoproteína-P na penetração tecidual de fluoroquinolonas / Population pharmacokinetic modeling on evaluation of role P-glycoprotein on fluoroquinolones tissue penetration

Zimmermann, Estevan Sonego January 2015 (has links)
Objetivos: O objetivo deste trabalho foi desenvolver modelo farmacocinético (popPK) populacional para descrever simultaneamente as concentrações das fluoroquinolonas (levofloxacino – LEV e ciprofloxacino – CIP) no plasma, pulmão e próstata na presença e ausência do inibidor da P-gp tariquidar (TAR) visando determinar a contribuição desse transportador de efluxo na distribuição tecidual desses antimicrobianos. Método: Para alcançar este objetivo as seguintes etapas foram realizadas: i) foi validado o método analítico de HPLC-fluorescência para quantificação de CIP em amostras de plasma e microdialisado; ii) foram estabelecidas as condições para microdiálise para o CIP e as taxas de recuperação in vitro, por diálise e retrodiálise, e em tecido pulmonar e prostático in vivo por retrodiálise; iii) foi avaliada a farmacocinética do LEV após administração a ratos Wistar via i.v. bolus e por nebulização intratraqueal na dose de 7mg/kg na ausência e após administração prévia de TAR (15 mg/Kg i.v.); iv) foi desenvolvido um modelo popPK para prever as concentrações do LEV simultaneamente no plasma, pulmão e próstata após administração intravenosa e intratraqueal na presença e ausência do TAR; v) foi desenvolvido o modelo popPK para descrever as concentrações de CIP simultaneamente no plasma, pulmão e próstata após administração a ratos Wistar da dose de 7 mg/kg i.v. bolus na presença e ausência de TAR (15 mg/kg i.v.); vi) Para ambos os fármacos os dados foram avaliados por análise não-compartimental e modelados por modelo de quatro compartimentos modificado, com ajuda do software NONMEN®. Resultados e Conclusões. i) Método analítico foi desenvolvido e validado com sucesso para quantificação de CIP em HPLC/fluorescência mostrando-se linear na faixa de 10–2000 ng/mL em plasma e 5–1000 ng/mL em microdialisado com coeficientes de determinação (r2) superiores a 0,99. Os valores obtidos de erro padrão relativo para ensaios de precisão intra e inter-dia foram entre 8,8 e 6,0 %, para microdialisado entre 11,1 e 7,4 % para plasma, respectivamente. Os valores de exatidão foram 86,1% entre 114.3% para microdialisado e 85,6% entre 108,2% para plasma; ii) A avaliação do CIP por microdiálise mostrou recuperação concentração independente (0,25 - 1,5 μg/mL). Além disso, não houve diferença entre as recuperações obtidas por diálise e retrodiálise para o mesmo fluxo. No fluxo selecionado para os experimentos (1,5 μL/min) as recuperações médias por diálise e retrodiálise foram 23,0 ± 2,8% e 22,8 ± 1,6 %, respectivamente. A recuperação relativa das sondas in vivo foi de 11,3 ± 1,9 e 13,1 ± 2,7 % para pulmão e próstata, respectivamente; iii) A análise dos perfis plasmáticos e teciduais LEV após dose intravenosa do grupo controle (sem TAR) mostrou boa penetração tecidual na próstata (ƒT = 0,68) e no pulmão (ƒT = 0,69). Para a mesma via de administração, o grupo TAR mostrou uma penetração praticamente inalterada para o pulmão (ƒT = 0,81) e um aumento de mais de 2 vezes na penetração prostática (ƒT= 1,64). Na dose intratraqueal houve um aumento significativo na biodisponibilidade para o grupo TAR (F = 0,86) em relação ao controle (F = 0,4). Nessa via de administração foi detectado um aumento significativo na exposição (ASC) do pulmão ao LEV no grupo TAR demonstrando que o transporte por efluxo no pulmão é mais relevante quando o fármaco é administrado pela via intratraqueal; iv) Para o LEV, o modelo popPK de quatro compartimentos foi capaz de descrever simultaneamente os dados no plasma, pulmão e próstata na presença e ausência do TAR. Além disso, o modelo para administração intravenosa foi estendido e adaptado para administração intratraqueal. Foi possível analisar o impacto do transporte por efluxo sobre a penetração tecidual do LEV por diferentes vias de administração utilizando o modelo popPK; v) A avaliação do perfil farmacocinético plasmático do CIP após administração intravenosa, na presença e ausência de TAR, demonstrou diferença significativa entre todos os parâmetros calculados por análise não-compartimental, exceto para a constante de velocidade de eliminação (= 0,05). Em relação à penetração tecidual do CIP na próstata e pulmão, não houve alteração significativa nos parâmetros de eliminação e exposição tecidual do fármaco na presença do inibidor de efluxo TAR ( = 0,05), demonstrando que o transporte por efluxo possui papel minoritário no processo de distribuição do fármaco para os tecidos estudados. O modelo popPK de quatro compartimentos foi capaz de descrever as concentrações plasmáticas totais, livres no pulmão e próstata em presença e ausência de TAR, simultaneamente; vi) O modelo popPK desenvolvido permitiu o estudo mais profundo do processo de distribuição do LEV e do CIP no pulmão e próstata. / Objectives: The aim of this study was to develop a population pharmacokinetic model (popPK) able to simultaneously describe fluoroquinolones (levofloxacin – LEV and ciprofloxacin – CIP) concentrations in plasma, lung and prostate in the presence and absence of the inhibitor of P-gp tariquidar (TAR) to determine the contribution of this efflux transporter on the tissue distribution of these antimicrobials. Methods: To achieve this goal the following steps were taken: i) An analytical method by HPLC-fluorescence was developed and validated for CIP analysis in plasma and microdialysate samples; ii) microdialysis conditions were established for CIP including determination of in vitro relative recovery by dialysis and retrodialysis. The relative recovery was also determined in vivo, in lung and prostate, by retrodialysis; iii) LEV pharmacokinetics was evaluated after intravenous (i.v.) bolus and intratracheal (i.t.) administration of 7 mg/kg dose alone and following TAR administration (15 mg/kg i.v.) to Wistar rats; iv) a popPK model was developed to describe and predict LEV concentrations in plasma, lung and prostate following i.v. and i.t. dosing with and without TAR co-administration; v) the popPK model developed was used to describe CIP concentrations in plasma, lung and prostate after i.v. bolus administration of 7 mg/kg in presence and absence of TAR; vi) For both drugs non-compartmental analysis was performed besides data modeling by four compartment model using NONMEN®. Results and Conclusions i) The analytical method was developed and successfully validated for quantification of CIP by HPLC/fluorescence. The method was linear in the range of 10-2000 ng/mL in plasma and 5-1000 ng/mL in tissues microdialysate samples with coefficients of determination (r2) higher than 0.99. The relative standard error (RSD) obtained for intra and inter-day precision were lower than 8.8% and 6.0% for microdialysate and lower than 11.1 and 7.4% for plasma, respectively. The accuracy was 86.1% to 114.3% for microdialysate and 85.6 to 108.2 % for plasma samples; ii) the evaluation of CIP microdialysis probes relative recovery in vitro showed that the recovery was concentration independent (0.25 to 1.5 μg/mL). In addition, there was no statistical difference between the recoveries determined by dialysis and retrodialysis at the same flow rate. Using the selected flow rate (1.5 μL/min) the recoveries by dialysis and retrodialysis were 23.0 ± 2.8% and 22.8 ± 1.6%, respectively. CIP relative recoveries in vivo by retrodialysis were 11.3 ± 1.9 and 13.1 ± 2.7% for lung and prostate, respectively; iii) the analysis of LEV plasma and tissues concentration-time profiles after i.v. dosing showed a good tissue penetration of LEV in the prostate (ƒT = 0.68) and lung (ƒT = 0.69). For the same route of administration, TAR group showed virtually the same penetration into lung (ƒT = 0.81) and an increase of over 2 fold in drug levels in prostate (ƒT = 1.64). For the i.t. dose, there was a significant increase on LEV bioavailability for TAR group (F = 0.86) compared to control (F = 0.4). Furthermore, a significant increase was detected on lung exposure to LEV for TAR group indicating that efflux transport in the lung is more relevant when the drug is administered by the i.t. route; iv) For LEV, a four compartment model was able to describe the data simultaneously in plasma, lung and prostate in the presence and absence of TAR. Moreover, the intravenous model was extended to adapt the intratracheal dosing route. The popPK model allowed to analyze the impact of efflux transport on tissue LEV penetration of different routes of administration; v) the evaluation of plasma CIP profiles after i.v. dosing with and without TAR showed a significant difference in all parameters determined by non-compartmental analysis in the TAR group, except the elimination rate constant (α = 0.05). The CIP tissue penetration in prostate and lung, no significant difference was observed in tissues exposure and elimination rate when TAR was present demonstrating that efflux transporter play a minor role on CIP distribution to tissues investigated (α = 0.05). The popPK model with four compartments was able to describe CIP concentrations in plasma, lung and prostate in the presence and absence of TAR, simultaneously; vi) the popPK model developed allowed a more detailed investigation of LEV and CIP distribution process in lung and prostate.
4

Avaliação por microdiálise da penetração pulmonar da tobramicina em modelo de pneumonia por microrganismo formador de biofilme / Evaluation of tobramycin lung penetration in a biofilm-forming microorganism pneumonia model using microdialysis

Bernardi, Priscila Martini January 2016 (has links)
Objetivo: Avaliar a influência da infecção por Pseudomonas aeruginosa formadora de biofilme na penetração pulmonar da tobramicina através da modelagem populacional dos dados de plasma e microdialisado em animais sadios e infectados. Metodologia: A pneumonia foi desenvolvida através de inoculação de P. aeruginosa (cepa PA14) pela via intratraqueal (109 UFC/mL) a ratos Wistar. Sete dias após a inoculação os animais infectados (n = 5) receberam tobramicina 10 mg/kg i.v. bolus. Animais saudáveis (n = 6) foram utilizados como controle. As concentrações livres pulmonares foram coletadas por microdiálise (sonda CMA/20). As sondas de microdiálise foram calibradas in vitro através de diálise e retrodiálise e in vivo utilizando retrodiálise. A ligação da tobramicina às proteínas plasmáticas foi determinada por microdiálise. As concentrações do fármaco nas amostras foram determinadas por cromatografia líquida em tandem com espectrometria de massas (CLAE-EM/EM) utilizando metodologia validada. Os parâmetros farmacocinéticos foram determinados por abordagem não-compartimental (Phoenix®) e modelagem populacional (popPK) (Monolix®). Resultados e Discussão: A recuperação relativa (RR) das sondas foi independente da concentração de tobramicina e inversamente proporcional ao fluxo de perfusão. A RR determinada in vivo foi de 27,64 % ± 7,70 para animais sadios e 24,47 % ± 1,66 para animais infectados. A ligação às proteínas plasmáticas foi de 11,3 ± 1,9%. A infecção com formação de biofilme não alterou a farmacocinética plasmática da tobramicina, entretanto reduziu em cerca de 70% a penetração pulmonar do fármaco. As concentrações plasmáticas e teciduais foram simultaneamente descritas por um modelo farmacocinético populacional de dois compartimentos, tanto em animais sadios como infectados. A infecção, utilizada como covariável categórica, permitiu descrever as alterações no volume do compartimento periférico e na constante de eliminação do compartimento central devido à infecção. Conclusões: As concentrações plasmáticas da tobramicina, utilizadas para ajuste posológico, superestimam as concentrações ativas no pulmão infectado. O modelo popPK descrito permite a previsão das concentrações livres pulmonares da tobramicina em pulmão infectado, podendo auxiliar na otimização da terapia de pneumonias com P. aeruginosa formadora de biofilme. / Objective: To evaluate the influence of biofilm-forming Pseudomonas aeruginosa infection on tobramycin lung penetration by population pharmacokinetic modeling of plasma and microdialysate data in healthy and infected rats. Methodology: The infection was developed by intratracheal inoculation (109 CFU/mL) of P. aeruginosa (PA14 strain) to Wistar rats. In order to determine plasma and tissue concentrations, seven days after the inoculation the infected animals (n = 5) received tobramycin 10 mg/kg i.v. bolus dose via femoral vein. A healthy group (n = 6) was used as control. Free lung concentrations were determined in microdialysate samples obtained using CMA/20 probes. Microdialysis probes were calibrated in vitro by dialysis and retrodialysis and in vivo by retrodialysis. Tobramycin plasma protein binding was determined by microdialysis. Plasma and tissue concentrations were quantified by a developed and validated liquid chromatography in tandem with mass spectrometry (LC-MS/MS) method. Compartmental and non-compartmental analyses were carried out by Monolix™ and Phoenix™ software, respectively. Results and Discussion: Microdialysis probes relative recovery was independent of the tobramycin concentration and is inversely proportional to the perfusion flow rate investigated. The in vivo probe recovery was 27.64 % ± 7.70 (healthy rats) and 24.47 % ± 1.66 (infected rats). The plasma protein binding was 11.3 ± 1.9%. The biofilm-forming lung infection did not alter tobramycin plasma pharmacokinetics, however, reduced lung penetration in about 70%. The plasma and tissue concentrations-time profiles were simultaneously described by a two compartment popPK model in healthy and infected animals. The infection process, used as categorical covariate allowed describing the changes observed in the volume of the peripheral compartment and in constant rate of elimination from the central compartment. Conclusions: Tobramycin plasma concentrations, used for dosing adjustments, overestimate active concentrations in infected lung. The described popPK model allows predicting free tobramycin lung concentrations in infected lung and could be useful to optimize the treatment of pneumonia caused by biofilm-forming P. aeruginosa with this drug.
5

Avaliação por microdiálise da penetração pulmonar da tobramicina em modelo de pneumonia por microrganismo formador de biofilme / Evaluation of tobramycin lung penetration in a biofilm-forming microorganism pneumonia model using microdialysis

Bernardi, Priscila Martini January 2016 (has links)
Objetivo: Avaliar a influência da infecção por Pseudomonas aeruginosa formadora de biofilme na penetração pulmonar da tobramicina através da modelagem populacional dos dados de plasma e microdialisado em animais sadios e infectados. Metodologia: A pneumonia foi desenvolvida através de inoculação de P. aeruginosa (cepa PA14) pela via intratraqueal (109 UFC/mL) a ratos Wistar. Sete dias após a inoculação os animais infectados (n = 5) receberam tobramicina 10 mg/kg i.v. bolus. Animais saudáveis (n = 6) foram utilizados como controle. As concentrações livres pulmonares foram coletadas por microdiálise (sonda CMA/20). As sondas de microdiálise foram calibradas in vitro através de diálise e retrodiálise e in vivo utilizando retrodiálise. A ligação da tobramicina às proteínas plasmáticas foi determinada por microdiálise. As concentrações do fármaco nas amostras foram determinadas por cromatografia líquida em tandem com espectrometria de massas (CLAE-EM/EM) utilizando metodologia validada. Os parâmetros farmacocinéticos foram determinados por abordagem não-compartimental (Phoenix®) e modelagem populacional (popPK) (Monolix®). Resultados e Discussão: A recuperação relativa (RR) das sondas foi independente da concentração de tobramicina e inversamente proporcional ao fluxo de perfusão. A RR determinada in vivo foi de 27,64 % ± 7,70 para animais sadios e 24,47 % ± 1,66 para animais infectados. A ligação às proteínas plasmáticas foi de 11,3 ± 1,9%. A infecção com formação de biofilme não alterou a farmacocinética plasmática da tobramicina, entretanto reduziu em cerca de 70% a penetração pulmonar do fármaco. As concentrações plasmáticas e teciduais foram simultaneamente descritas por um modelo farmacocinético populacional de dois compartimentos, tanto em animais sadios como infectados. A infecção, utilizada como covariável categórica, permitiu descrever as alterações no volume do compartimento periférico e na constante de eliminação do compartimento central devido à infecção. Conclusões: As concentrações plasmáticas da tobramicina, utilizadas para ajuste posológico, superestimam as concentrações ativas no pulmão infectado. O modelo popPK descrito permite a previsão das concentrações livres pulmonares da tobramicina em pulmão infectado, podendo auxiliar na otimização da terapia de pneumonias com P. aeruginosa formadora de biofilme. / Objective: To evaluate the influence of biofilm-forming Pseudomonas aeruginosa infection on tobramycin lung penetration by population pharmacokinetic modeling of plasma and microdialysate data in healthy and infected rats. Methodology: The infection was developed by intratracheal inoculation (109 CFU/mL) of P. aeruginosa (PA14 strain) to Wistar rats. In order to determine plasma and tissue concentrations, seven days after the inoculation the infected animals (n = 5) received tobramycin 10 mg/kg i.v. bolus dose via femoral vein. A healthy group (n = 6) was used as control. Free lung concentrations were determined in microdialysate samples obtained using CMA/20 probes. Microdialysis probes were calibrated in vitro by dialysis and retrodialysis and in vivo by retrodialysis. Tobramycin plasma protein binding was determined by microdialysis. Plasma and tissue concentrations were quantified by a developed and validated liquid chromatography in tandem with mass spectrometry (LC-MS/MS) method. Compartmental and non-compartmental analyses were carried out by Monolix™ and Phoenix™ software, respectively. Results and Discussion: Microdialysis probes relative recovery was independent of the tobramycin concentration and is inversely proportional to the perfusion flow rate investigated. The in vivo probe recovery was 27.64 % ± 7.70 (healthy rats) and 24.47 % ± 1.66 (infected rats). The plasma protein binding was 11.3 ± 1.9%. The biofilm-forming lung infection did not alter tobramycin plasma pharmacokinetics, however, reduced lung penetration in about 70%. The plasma and tissue concentrations-time profiles were simultaneously described by a two compartment popPK model in healthy and infected animals. The infection process, used as categorical covariate allowed describing the changes observed in the volume of the peripheral compartment and in constant rate of elimination from the central compartment. Conclusions: Tobramycin plasma concentrations, used for dosing adjustments, overestimate active concentrations in infected lung. The described popPK model allows predicting free tobramycin lung concentrations in infected lung and could be useful to optimize the treatment of pneumonia caused by biofilm-forming P. aeruginosa with this drug.
6

Avaliação por microdiálise da penetração pulmonar da tobramicina em modelo de pneumonia por microrganismo formador de biofilme / Evaluation of tobramycin lung penetration in a biofilm-forming microorganism pneumonia model using microdialysis

Bernardi, Priscila Martini January 2016 (has links)
Objetivo: Avaliar a influência da infecção por Pseudomonas aeruginosa formadora de biofilme na penetração pulmonar da tobramicina através da modelagem populacional dos dados de plasma e microdialisado em animais sadios e infectados. Metodologia: A pneumonia foi desenvolvida através de inoculação de P. aeruginosa (cepa PA14) pela via intratraqueal (109 UFC/mL) a ratos Wistar. Sete dias após a inoculação os animais infectados (n = 5) receberam tobramicina 10 mg/kg i.v. bolus. Animais saudáveis (n = 6) foram utilizados como controle. As concentrações livres pulmonares foram coletadas por microdiálise (sonda CMA/20). As sondas de microdiálise foram calibradas in vitro através de diálise e retrodiálise e in vivo utilizando retrodiálise. A ligação da tobramicina às proteínas plasmáticas foi determinada por microdiálise. As concentrações do fármaco nas amostras foram determinadas por cromatografia líquida em tandem com espectrometria de massas (CLAE-EM/EM) utilizando metodologia validada. Os parâmetros farmacocinéticos foram determinados por abordagem não-compartimental (Phoenix®) e modelagem populacional (popPK) (Monolix®). Resultados e Discussão: A recuperação relativa (RR) das sondas foi independente da concentração de tobramicina e inversamente proporcional ao fluxo de perfusão. A RR determinada in vivo foi de 27,64 % ± 7,70 para animais sadios e 24,47 % ± 1,66 para animais infectados. A ligação às proteínas plasmáticas foi de 11,3 ± 1,9%. A infecção com formação de biofilme não alterou a farmacocinética plasmática da tobramicina, entretanto reduziu em cerca de 70% a penetração pulmonar do fármaco. As concentrações plasmáticas e teciduais foram simultaneamente descritas por um modelo farmacocinético populacional de dois compartimentos, tanto em animais sadios como infectados. A infecção, utilizada como covariável categórica, permitiu descrever as alterações no volume do compartimento periférico e na constante de eliminação do compartimento central devido à infecção. Conclusões: As concentrações plasmáticas da tobramicina, utilizadas para ajuste posológico, superestimam as concentrações ativas no pulmão infectado. O modelo popPK descrito permite a previsão das concentrações livres pulmonares da tobramicina em pulmão infectado, podendo auxiliar na otimização da terapia de pneumonias com P. aeruginosa formadora de biofilme. / Objective: To evaluate the influence of biofilm-forming Pseudomonas aeruginosa infection on tobramycin lung penetration by population pharmacokinetic modeling of plasma and microdialysate data in healthy and infected rats. Methodology: The infection was developed by intratracheal inoculation (109 CFU/mL) of P. aeruginosa (PA14 strain) to Wistar rats. In order to determine plasma and tissue concentrations, seven days after the inoculation the infected animals (n = 5) received tobramycin 10 mg/kg i.v. bolus dose via femoral vein. A healthy group (n = 6) was used as control. Free lung concentrations were determined in microdialysate samples obtained using CMA/20 probes. Microdialysis probes were calibrated in vitro by dialysis and retrodialysis and in vivo by retrodialysis. Tobramycin plasma protein binding was determined by microdialysis. Plasma and tissue concentrations were quantified by a developed and validated liquid chromatography in tandem with mass spectrometry (LC-MS/MS) method. Compartmental and non-compartmental analyses were carried out by Monolix™ and Phoenix™ software, respectively. Results and Discussion: Microdialysis probes relative recovery was independent of the tobramycin concentration and is inversely proportional to the perfusion flow rate investigated. The in vivo probe recovery was 27.64 % ± 7.70 (healthy rats) and 24.47 % ± 1.66 (infected rats). The plasma protein binding was 11.3 ± 1.9%. The biofilm-forming lung infection did not alter tobramycin plasma pharmacokinetics, however, reduced lung penetration in about 70%. The plasma and tissue concentrations-time profiles were simultaneously described by a two compartment popPK model in healthy and infected animals. The infection process, used as categorical covariate allowed describing the changes observed in the volume of the peripheral compartment and in constant rate of elimination from the central compartment. Conclusions: Tobramycin plasma concentrations, used for dosing adjustments, overestimate active concentrations in infected lung. The described popPK model allows predicting free tobramycin lung concentrations in infected lung and could be useful to optimize the treatment of pneumonia caused by biofilm-forming P. aeruginosa with this drug.
7

Modelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosa / Pharmacokinetic/Pharmacodynamic (PK/PD) model to characterize ciprofloxacin effect in pseudomonas aeruginosa biofilm infection

Torres, Bruna Gaelzer Silva January 2016 (has links)
Biofilmes são comunidades bacterianas complexas encapsuladas em matrizes poliméricas autoproduzidas e podem se desenvolver em superfícies inertes ou tecidos vivos. A formação do biofilme é um importante fator de virulência, pois permite à bactéria resistir às respostas do hospedeiro e à terapia antimicrobiana. Devido a essa elevada resistência aos antimicrobianos, é difícil estabelecer uma estratégia eficaz para o tratamento de infecções com formação de biofilmes, levando a falhas na erradicação das mesmas. Nesse contexto, o objetivo do presente estudo é desenvolver um modelo farmacocinético/farmacodinâmico (PK/PD) para descrever o efeito do ciprofloxacino (CIP) na presença de biofilmes de Pseudomonas aeruginosa (ATCC 27853), visto que a modelagem PK/PD de antimicrobianos é uma ferramenta útil na escolha de regimes posológicos que atinjam o efeito bactericida máximo, minimizando o desenvolvimento de resistência. Para atingir esse objetivo, inicialmente um método analítico por CLAE/fluorescência foi desenvolvido para quantificar o CIP em amostras de plasma e microdialisado. O método desenvolvido foi simples, rápido e com sensibilidade adequada para corretamente caracterizar a farmacocinética plasmática e pulmonar do CIP. Posteriormente, um modelo animal de infecção pulmonar crônica foi adaptado da literatura e padronizado, permitindo a investigação da distribuição pulmonar do CIP em ratos Wistar sadios e infectados. Para tal, bactérias foram imobilizadas em beads de alginato a fim de manter a infecção por até 14 dias com cargas bacterianas superiores à 108 UFC/pulmão. Estudo de microdiálise foi então conduzido para avaliar as concentrações livres de CIP após administração intravenosa de 20 mg/kg. A análise não-compartimental (NCA) e a modelagem farmacocinética populacional (PopPK) dos dados foram realizadas nos softwares Phoenix® e NONMEM®, respectivamente. Diferenças significativas foram observadas no clearance plasmático (1,59 ± 0,41 L/h/kg e 0,89 ± 0,44 L/h/kg) e na constante de eliminação (0,23 ± 0,04 h-1 e 0,14 ± 0,08 h-1) para ratos sadios e infectados, resultando em uma exposição plasmática maior nos animais infectados (ASC0-∞ = 27,3 ± 12,1 μg·h/mL) quando comparados com os animais sadios (ASC0-∞ = 13,3 ± 3,5 μg·h/mL) ( = 0,05). Apesar da maior exposição plasmática, quando comparados com os animais saudáveis (fT = 1,69), animais infectados apresentaram uma penetração pulmonar quatro vezes menor (fT = 0,44). Diferenças na constante de eliminação pulmonar não foram observadas. Dados plasmáticos e pulmonares foram simultaneamente descritos por modelo PopPK constituído de compartimentos venoso e arterial, dois compartimentos representativos de duas regiões pulmonares distintas e dois compartimentos periféricos, representando outros tecidos que não os pulmões. Um clearance pulmonar foi adicionado ao modelo apenas para os dados de microdiálise dos animais infectados (CLlung = 0,643 L/h/kg) afim de explicar a exposição tecidual diminuída. O modelo desenvolvido descreveu, com sucesso, os dados plasmáticos e teciduais de animais sadios e infectados, permitindo a correta caracterização das alterações observadas na disposição plasmática e pulmonar do CIP decorrentes da infecção com biofilme. Para os estudos de farmacodinâmica, o efeito bactericida do CIP frente a biofilmes e células planctônicas de P. aeruginosa foi simultaneamente avaliado através do uso de curvas de morte bacteriana. Para a construção destas curvas, biofilmes de P. aeruginosa foram formados na superfície de blocos de acrílico e sua formação foi confirmada pelo ensaio cristal violeta e por microscopia eletrônica de varredura. Os blocos foram expostos a concentrações constantes de CIP (de 0,0625 a 10 μg/mL) e, em tempos pré-determinados, células planctônicas e de biofilmes eram amostradas para quantificação. Um modelo semi-mecanístico que incorpora um modelo Emax sigmoidal foi utilizado para descrever o efeito do CIP frente a ambos estilos de vida bacteriano. Uma subpopulação pré-existente com menor suscetibilidade ao CIP foi incluída no modelo e o efeito do CIP nesta subpopulação também foi descrito pelo modelo Emax sigmoidal. A comparação dos parâmetros estimados pelo modelo demonstrou que o efeito in vitro do CIP é maior para as células planctônicas (EC50 = 0,259 mg/L e 0,123 mg/L e Emax = 2,25 h-1 e 5,59 h-1 para biofilmes e planctônicas, respectivamente). A potência estimada do CIP para a subpopulação resistente foi muito menor para ambos estilos de vida bacteriano (EC50 = 2,71 mg/L e 1,15 mg/L para biofilmes e planctônicas, respectivamente). Os modelos desenvolvidos podem ser utilizados para a simulação de cenários não testados e servir como uma ferramenta para guiar a escolha dos regimes posológicos adequados, contribuindo para o sucesso terapêutico no tratamento de infecções associadas à biofilmes. / Biofilms are complex bacterial communities enclosed in self-produced polymeric matrices that can develop in inert surfaces or living tissues. Biofilm formation is an important virulence factor that allows bacteria to resist host responses and antibacterial agents. Due to this high resistance to antibiotics, it is difficult to establish an efficacious strategy for treatment of infections with biofilm formation leading to failure in infection eradication. In this context, the goal of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model to describe the antimicrobial effect of ciprofloxacin (CIP) in the presence of biofilms of Pseudomonas aeruginosa (ATCC 27853), since PK/PD modeling for antibacterial agents can be a useful tool to choose dosing regimens and to achieve the maximum bactericidal effect, minimizing the development of resistance. To reach this goal, firstly an analytical method based on HPLC/fluorescence was developed in order to quantify CIP in plasma and lung microdialysate. The developed method was simple, fast and with enough sensibility to proper characterize CIP plasma and lung pharmacokinetics. Secondly, an animal model of chronic lung infection was adapted from literature and standardized, allowing the analysis of CIP lung distribution in infected and healthy Wistar rats. Bacteria were immobilized in alginate beads prior to inoculation to Wistar rats in order to sustain the pneumonia for 14 days, maintaining a bacterial load superior to 108 CFU/lung. A microdialysis study was then conducted to evaluate free CIP concentrations after an intravenous administration of 20 mg/kg. Non-compartimental analysis (NCA) and populational PK modeling (PopPK) of the data were performed in Phoenix® and NONMEM®, respectively. Statistical differences were observed in the plasma clearance (1.59 ± 0.41 L/h/kg and 0.89 ± 0.44 L/h/kg) and elimination rate constant (0.23 ± 0.04 h-1and 0.14 ± 0.08 h-1) for healthy and infected rats, respectively, resulting in a significantly higher CIP plasma exposure in infected rats (AUC0-∞ = 27.3 ± 12.1 μg·h/mL) compare to healthy animals (AUC0-∞ = 13.3 ± 3.5 μg·h/mL) ( = 0.05). Besides the plasma exposure, a four times lower pulmonary penetration was observed in infected rat’s lungs (fT = 0.44) in comparison to healthy animals (fT = 1.69), with no significant differences in the lung elimination rate constant. Plasma and lung data were simultaneously fitted using a PopPK model consisting of an arterial and a venous compartment, two compartments representing different regions of the lungs and two peripheral distribution compartments, representing tissues other than lungs. A lung clearance was added to the model for infected animals (CLlung = 0.643 L/h/kg) to explain the lower tissue exposure. The model successfully described the plasma and microdialysis data from both, healthy and infected rats and allowed to correctly describe the changes in CIP plasma and lung disposition in biofilm infections. For the pharmacodynamic studies, CIP bactericidal effect against Pseudomonas aeruginosa biofilms and planktonic shedding cells were simultaneously evaluated using the time-kill curves approach. For the time-kill curves construction, P. aeruginosa biofilms were formed in acrylic blocks, which was confirmed by the crystal violet assay and scanning electron microscopy. The blocks were placed in flasks containing Mueller-Hinton growth medium and exposed to constant CIP concentrations (ranging from 0.0625 to 10 μg/mL). At pre-determined time points, biofilm and planktonic cells were sampled for bacterial counting. A mechanism-based model which incorporates a sigmoidal Emax model was used to describe the CIP effect against P.aeruginosa in both llifestyles, biofilm and planktonic. The presence of a pre-existing resistant subpopulation was included in the model and also modeled with a sigmoidal Emax model to describe CIP effect in this subpopulation. Comparison of the parameter estimates showed that the in vitro effect of CIP is higher for planktonic cells (EC50 = 0.259 mg/L and 0.123 mg/L and Emax = 2.25 h-1 and 5.59 h-1 for biofilm and planktonic cells, respectively). CIP potency was much lower for the resistant subpopulation, for both bacteria lifestyles (EC50 = 2.71 mg/L and 1.15 mg/L for biofilm and planktonic, respectively). The developed models can be used to simulate untested scenarios and serve as a tool to guide dosing regimen selection, contributing for the therapeutic success of treatments of biofilm-associated infections.
8

Modelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosa / Pharmacokinetic/Pharmacodynamic (PK/PD) model to characterize ciprofloxacin effect in pseudomonas aeruginosa biofilm infection

Torres, Bruna Gaelzer Silva January 2016 (has links)
Biofilmes são comunidades bacterianas complexas encapsuladas em matrizes poliméricas autoproduzidas e podem se desenvolver em superfícies inertes ou tecidos vivos. A formação do biofilme é um importante fator de virulência, pois permite à bactéria resistir às respostas do hospedeiro e à terapia antimicrobiana. Devido a essa elevada resistência aos antimicrobianos, é difícil estabelecer uma estratégia eficaz para o tratamento de infecções com formação de biofilmes, levando a falhas na erradicação das mesmas. Nesse contexto, o objetivo do presente estudo é desenvolver um modelo farmacocinético/farmacodinâmico (PK/PD) para descrever o efeito do ciprofloxacino (CIP) na presença de biofilmes de Pseudomonas aeruginosa (ATCC 27853), visto que a modelagem PK/PD de antimicrobianos é uma ferramenta útil na escolha de regimes posológicos que atinjam o efeito bactericida máximo, minimizando o desenvolvimento de resistência. Para atingir esse objetivo, inicialmente um método analítico por CLAE/fluorescência foi desenvolvido para quantificar o CIP em amostras de plasma e microdialisado. O método desenvolvido foi simples, rápido e com sensibilidade adequada para corretamente caracterizar a farmacocinética plasmática e pulmonar do CIP. Posteriormente, um modelo animal de infecção pulmonar crônica foi adaptado da literatura e padronizado, permitindo a investigação da distribuição pulmonar do CIP em ratos Wistar sadios e infectados. Para tal, bactérias foram imobilizadas em beads de alginato a fim de manter a infecção por até 14 dias com cargas bacterianas superiores à 108 UFC/pulmão. Estudo de microdiálise foi então conduzido para avaliar as concentrações livres de CIP após administração intravenosa de 20 mg/kg. A análise não-compartimental (NCA) e a modelagem farmacocinética populacional (PopPK) dos dados foram realizadas nos softwares Phoenix® e NONMEM®, respectivamente. Diferenças significativas foram observadas no clearance plasmático (1,59 ± 0,41 L/h/kg e 0,89 ± 0,44 L/h/kg) e na constante de eliminação (0,23 ± 0,04 h-1 e 0,14 ± 0,08 h-1) para ratos sadios e infectados, resultando em uma exposição plasmática maior nos animais infectados (ASC0-∞ = 27,3 ± 12,1 μg·h/mL) quando comparados com os animais sadios (ASC0-∞ = 13,3 ± 3,5 μg·h/mL) ( = 0,05). Apesar da maior exposição plasmática, quando comparados com os animais saudáveis (fT = 1,69), animais infectados apresentaram uma penetração pulmonar quatro vezes menor (fT = 0,44). Diferenças na constante de eliminação pulmonar não foram observadas. Dados plasmáticos e pulmonares foram simultaneamente descritos por modelo PopPK constituído de compartimentos venoso e arterial, dois compartimentos representativos de duas regiões pulmonares distintas e dois compartimentos periféricos, representando outros tecidos que não os pulmões. Um clearance pulmonar foi adicionado ao modelo apenas para os dados de microdiálise dos animais infectados (CLlung = 0,643 L/h/kg) afim de explicar a exposição tecidual diminuída. O modelo desenvolvido descreveu, com sucesso, os dados plasmáticos e teciduais de animais sadios e infectados, permitindo a correta caracterização das alterações observadas na disposição plasmática e pulmonar do CIP decorrentes da infecção com biofilme. Para os estudos de farmacodinâmica, o efeito bactericida do CIP frente a biofilmes e células planctônicas de P. aeruginosa foi simultaneamente avaliado através do uso de curvas de morte bacteriana. Para a construção destas curvas, biofilmes de P. aeruginosa foram formados na superfície de blocos de acrílico e sua formação foi confirmada pelo ensaio cristal violeta e por microscopia eletrônica de varredura. Os blocos foram expostos a concentrações constantes de CIP (de 0,0625 a 10 μg/mL) e, em tempos pré-determinados, células planctônicas e de biofilmes eram amostradas para quantificação. Um modelo semi-mecanístico que incorpora um modelo Emax sigmoidal foi utilizado para descrever o efeito do CIP frente a ambos estilos de vida bacteriano. Uma subpopulação pré-existente com menor suscetibilidade ao CIP foi incluída no modelo e o efeito do CIP nesta subpopulação também foi descrito pelo modelo Emax sigmoidal. A comparação dos parâmetros estimados pelo modelo demonstrou que o efeito in vitro do CIP é maior para as células planctônicas (EC50 = 0,259 mg/L e 0,123 mg/L e Emax = 2,25 h-1 e 5,59 h-1 para biofilmes e planctônicas, respectivamente). A potência estimada do CIP para a subpopulação resistente foi muito menor para ambos estilos de vida bacteriano (EC50 = 2,71 mg/L e 1,15 mg/L para biofilmes e planctônicas, respectivamente). Os modelos desenvolvidos podem ser utilizados para a simulação de cenários não testados e servir como uma ferramenta para guiar a escolha dos regimes posológicos adequados, contribuindo para o sucesso terapêutico no tratamento de infecções associadas à biofilmes. / Biofilms are complex bacterial communities enclosed in self-produced polymeric matrices that can develop in inert surfaces or living tissues. Biofilm formation is an important virulence factor that allows bacteria to resist host responses and antibacterial agents. Due to this high resistance to antibiotics, it is difficult to establish an efficacious strategy for treatment of infections with biofilm formation leading to failure in infection eradication. In this context, the goal of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model to describe the antimicrobial effect of ciprofloxacin (CIP) in the presence of biofilms of Pseudomonas aeruginosa (ATCC 27853), since PK/PD modeling for antibacterial agents can be a useful tool to choose dosing regimens and to achieve the maximum bactericidal effect, minimizing the development of resistance. To reach this goal, firstly an analytical method based on HPLC/fluorescence was developed in order to quantify CIP in plasma and lung microdialysate. The developed method was simple, fast and with enough sensibility to proper characterize CIP plasma and lung pharmacokinetics. Secondly, an animal model of chronic lung infection was adapted from literature and standardized, allowing the analysis of CIP lung distribution in infected and healthy Wistar rats. Bacteria were immobilized in alginate beads prior to inoculation to Wistar rats in order to sustain the pneumonia for 14 days, maintaining a bacterial load superior to 108 CFU/lung. A microdialysis study was then conducted to evaluate free CIP concentrations after an intravenous administration of 20 mg/kg. Non-compartimental analysis (NCA) and populational PK modeling (PopPK) of the data were performed in Phoenix® and NONMEM®, respectively. Statistical differences were observed in the plasma clearance (1.59 ± 0.41 L/h/kg and 0.89 ± 0.44 L/h/kg) and elimination rate constant (0.23 ± 0.04 h-1and 0.14 ± 0.08 h-1) for healthy and infected rats, respectively, resulting in a significantly higher CIP plasma exposure in infected rats (AUC0-∞ = 27.3 ± 12.1 μg·h/mL) compare to healthy animals (AUC0-∞ = 13.3 ± 3.5 μg·h/mL) ( = 0.05). Besides the plasma exposure, a four times lower pulmonary penetration was observed in infected rat’s lungs (fT = 0.44) in comparison to healthy animals (fT = 1.69), with no significant differences in the lung elimination rate constant. Plasma and lung data were simultaneously fitted using a PopPK model consisting of an arterial and a venous compartment, two compartments representing different regions of the lungs and two peripheral distribution compartments, representing tissues other than lungs. A lung clearance was added to the model for infected animals (CLlung = 0.643 L/h/kg) to explain the lower tissue exposure. The model successfully described the plasma and microdialysis data from both, healthy and infected rats and allowed to correctly describe the changes in CIP plasma and lung disposition in biofilm infections. For the pharmacodynamic studies, CIP bactericidal effect against Pseudomonas aeruginosa biofilms and planktonic shedding cells were simultaneously evaluated using the time-kill curves approach. For the time-kill curves construction, P. aeruginosa biofilms were formed in acrylic blocks, which was confirmed by the crystal violet assay and scanning electron microscopy. The blocks were placed in flasks containing Mueller-Hinton growth medium and exposed to constant CIP concentrations (ranging from 0.0625 to 10 μg/mL). At pre-determined time points, biofilm and planktonic cells were sampled for bacterial counting. A mechanism-based model which incorporates a sigmoidal Emax model was used to describe the CIP effect against P.aeruginosa in both llifestyles, biofilm and planktonic. The presence of a pre-existing resistant subpopulation was included in the model and also modeled with a sigmoidal Emax model to describe CIP effect in this subpopulation. Comparison of the parameter estimates showed that the in vitro effect of CIP is higher for planktonic cells (EC50 = 0.259 mg/L and 0.123 mg/L and Emax = 2.25 h-1 and 5.59 h-1 for biofilm and planktonic cells, respectively). CIP potency was much lower for the resistant subpopulation, for both bacteria lifestyles (EC50 = 2.71 mg/L and 1.15 mg/L for biofilm and planktonic, respectively). The developed models can be used to simulate untested scenarios and serve as a tool to guide dosing regimen selection, contributing for the therapeutic success of treatments of biofilm-associated infections.
9

Modelagem farmacocinética/farmacodinâmica (PK/PD) para caracterização do efeito do ciprofloxacino em infecções com biofilmes de Pseudomonas aeruginosa / Pharmacokinetic/Pharmacodynamic (PK/PD) model to characterize ciprofloxacin effect in pseudomonas aeruginosa biofilm infection

Torres, Bruna Gaelzer Silva January 2016 (has links)
Biofilmes são comunidades bacterianas complexas encapsuladas em matrizes poliméricas autoproduzidas e podem se desenvolver em superfícies inertes ou tecidos vivos. A formação do biofilme é um importante fator de virulência, pois permite à bactéria resistir às respostas do hospedeiro e à terapia antimicrobiana. Devido a essa elevada resistência aos antimicrobianos, é difícil estabelecer uma estratégia eficaz para o tratamento de infecções com formação de biofilmes, levando a falhas na erradicação das mesmas. Nesse contexto, o objetivo do presente estudo é desenvolver um modelo farmacocinético/farmacodinâmico (PK/PD) para descrever o efeito do ciprofloxacino (CIP) na presença de biofilmes de Pseudomonas aeruginosa (ATCC 27853), visto que a modelagem PK/PD de antimicrobianos é uma ferramenta útil na escolha de regimes posológicos que atinjam o efeito bactericida máximo, minimizando o desenvolvimento de resistência. Para atingir esse objetivo, inicialmente um método analítico por CLAE/fluorescência foi desenvolvido para quantificar o CIP em amostras de plasma e microdialisado. O método desenvolvido foi simples, rápido e com sensibilidade adequada para corretamente caracterizar a farmacocinética plasmática e pulmonar do CIP. Posteriormente, um modelo animal de infecção pulmonar crônica foi adaptado da literatura e padronizado, permitindo a investigação da distribuição pulmonar do CIP em ratos Wistar sadios e infectados. Para tal, bactérias foram imobilizadas em beads de alginato a fim de manter a infecção por até 14 dias com cargas bacterianas superiores à 108 UFC/pulmão. Estudo de microdiálise foi então conduzido para avaliar as concentrações livres de CIP após administração intravenosa de 20 mg/kg. A análise não-compartimental (NCA) e a modelagem farmacocinética populacional (PopPK) dos dados foram realizadas nos softwares Phoenix® e NONMEM®, respectivamente. Diferenças significativas foram observadas no clearance plasmático (1,59 ± 0,41 L/h/kg e 0,89 ± 0,44 L/h/kg) e na constante de eliminação (0,23 ± 0,04 h-1 e 0,14 ± 0,08 h-1) para ratos sadios e infectados, resultando em uma exposição plasmática maior nos animais infectados (ASC0-∞ = 27,3 ± 12,1 μg·h/mL) quando comparados com os animais sadios (ASC0-∞ = 13,3 ± 3,5 μg·h/mL) ( = 0,05). Apesar da maior exposição plasmática, quando comparados com os animais saudáveis (fT = 1,69), animais infectados apresentaram uma penetração pulmonar quatro vezes menor (fT = 0,44). Diferenças na constante de eliminação pulmonar não foram observadas. Dados plasmáticos e pulmonares foram simultaneamente descritos por modelo PopPK constituído de compartimentos venoso e arterial, dois compartimentos representativos de duas regiões pulmonares distintas e dois compartimentos periféricos, representando outros tecidos que não os pulmões. Um clearance pulmonar foi adicionado ao modelo apenas para os dados de microdiálise dos animais infectados (CLlung = 0,643 L/h/kg) afim de explicar a exposição tecidual diminuída. O modelo desenvolvido descreveu, com sucesso, os dados plasmáticos e teciduais de animais sadios e infectados, permitindo a correta caracterização das alterações observadas na disposição plasmática e pulmonar do CIP decorrentes da infecção com biofilme. Para os estudos de farmacodinâmica, o efeito bactericida do CIP frente a biofilmes e células planctônicas de P. aeruginosa foi simultaneamente avaliado através do uso de curvas de morte bacteriana. Para a construção destas curvas, biofilmes de P. aeruginosa foram formados na superfície de blocos de acrílico e sua formação foi confirmada pelo ensaio cristal violeta e por microscopia eletrônica de varredura. Os blocos foram expostos a concentrações constantes de CIP (de 0,0625 a 10 μg/mL) e, em tempos pré-determinados, células planctônicas e de biofilmes eram amostradas para quantificação. Um modelo semi-mecanístico que incorpora um modelo Emax sigmoidal foi utilizado para descrever o efeito do CIP frente a ambos estilos de vida bacteriano. Uma subpopulação pré-existente com menor suscetibilidade ao CIP foi incluída no modelo e o efeito do CIP nesta subpopulação também foi descrito pelo modelo Emax sigmoidal. A comparação dos parâmetros estimados pelo modelo demonstrou que o efeito in vitro do CIP é maior para as células planctônicas (EC50 = 0,259 mg/L e 0,123 mg/L e Emax = 2,25 h-1 e 5,59 h-1 para biofilmes e planctônicas, respectivamente). A potência estimada do CIP para a subpopulação resistente foi muito menor para ambos estilos de vida bacteriano (EC50 = 2,71 mg/L e 1,15 mg/L para biofilmes e planctônicas, respectivamente). Os modelos desenvolvidos podem ser utilizados para a simulação de cenários não testados e servir como uma ferramenta para guiar a escolha dos regimes posológicos adequados, contribuindo para o sucesso terapêutico no tratamento de infecções associadas à biofilmes. / Biofilms are complex bacterial communities enclosed in self-produced polymeric matrices that can develop in inert surfaces or living tissues. Biofilm formation is an important virulence factor that allows bacteria to resist host responses and antibacterial agents. Due to this high resistance to antibiotics, it is difficult to establish an efficacious strategy for treatment of infections with biofilm formation leading to failure in infection eradication. In this context, the goal of this study was to develop a pharmacokinetic/pharmacodynamic (PK/PD) model to describe the antimicrobial effect of ciprofloxacin (CIP) in the presence of biofilms of Pseudomonas aeruginosa (ATCC 27853), since PK/PD modeling for antibacterial agents can be a useful tool to choose dosing regimens and to achieve the maximum bactericidal effect, minimizing the development of resistance. To reach this goal, firstly an analytical method based on HPLC/fluorescence was developed in order to quantify CIP in plasma and lung microdialysate. The developed method was simple, fast and with enough sensibility to proper characterize CIP plasma and lung pharmacokinetics. Secondly, an animal model of chronic lung infection was adapted from literature and standardized, allowing the analysis of CIP lung distribution in infected and healthy Wistar rats. Bacteria were immobilized in alginate beads prior to inoculation to Wistar rats in order to sustain the pneumonia for 14 days, maintaining a bacterial load superior to 108 CFU/lung. A microdialysis study was then conducted to evaluate free CIP concentrations after an intravenous administration of 20 mg/kg. Non-compartimental analysis (NCA) and populational PK modeling (PopPK) of the data were performed in Phoenix® and NONMEM®, respectively. Statistical differences were observed in the plasma clearance (1.59 ± 0.41 L/h/kg and 0.89 ± 0.44 L/h/kg) and elimination rate constant (0.23 ± 0.04 h-1and 0.14 ± 0.08 h-1) for healthy and infected rats, respectively, resulting in a significantly higher CIP plasma exposure in infected rats (AUC0-∞ = 27.3 ± 12.1 μg·h/mL) compare to healthy animals (AUC0-∞ = 13.3 ± 3.5 μg·h/mL) ( = 0.05). Besides the plasma exposure, a four times lower pulmonary penetration was observed in infected rat’s lungs (fT = 0.44) in comparison to healthy animals (fT = 1.69), with no significant differences in the lung elimination rate constant. Plasma and lung data were simultaneously fitted using a PopPK model consisting of an arterial and a venous compartment, two compartments representing different regions of the lungs and two peripheral distribution compartments, representing tissues other than lungs. A lung clearance was added to the model for infected animals (CLlung = 0.643 L/h/kg) to explain the lower tissue exposure. The model successfully described the plasma and microdialysis data from both, healthy and infected rats and allowed to correctly describe the changes in CIP plasma and lung disposition in biofilm infections. For the pharmacodynamic studies, CIP bactericidal effect against Pseudomonas aeruginosa biofilms and planktonic shedding cells were simultaneously evaluated using the time-kill curves approach. For the time-kill curves construction, P. aeruginosa biofilms were formed in acrylic blocks, which was confirmed by the crystal violet assay and scanning electron microscopy. The blocks were placed in flasks containing Mueller-Hinton growth medium and exposed to constant CIP concentrations (ranging from 0.0625 to 10 μg/mL). At pre-determined time points, biofilm and planktonic cells were sampled for bacterial counting. A mechanism-based model which incorporates a sigmoidal Emax model was used to describe the CIP effect against P.aeruginosa in both llifestyles, biofilm and planktonic. The presence of a pre-existing resistant subpopulation was included in the model and also modeled with a sigmoidal Emax model to describe CIP effect in this subpopulation. Comparison of the parameter estimates showed that the in vitro effect of CIP is higher for planktonic cells (EC50 = 0.259 mg/L and 0.123 mg/L and Emax = 2.25 h-1 and 5.59 h-1 for biofilm and planktonic cells, respectively). CIP potency was much lower for the resistant subpopulation, for both bacteria lifestyles (EC50 = 2.71 mg/L and 1.15 mg/L for biofilm and planktonic, respectively). The developed models can be used to simulate untested scenarios and serve as a tool to guide dosing regimen selection, contributing for the therapeutic success of treatments of biofilm-associated infections.
10

Optimized design recommendation for first pharmacokinetic in vivo experiments for new tuberculosis drugs using pharmacometrics modelling and simulation

Leding, Albin January 2021 (has links)
Tuberculosis, the leading cause of death by a single infection disease caused by bacteria, requires long treatments and the bacteria are prone to develop drug resistance. Therefore, new efficient treatment regiments needs developing, which requires new tools for drug development. A major reason for discontinuance of a drug under development is undesired pharmacokinetic properties. Therefore, it is important to have early information of this, preferably the first time the drug is tested in animals. The first in vivo pharmacokinetic experiment is often done in mice and the only information present at this stage are often in vitro values and physicochemical properties. Physiological-based pharmacokinetic modelling can be used to extrapolate from in vitro to in vivo values. From this, the first in vivo pharmacokinetic experiment can be designed, often with the goal of reducing the amount of mice. This goal is one of the three R.s and it is called Reduction. To explore the Reduction of an experiment population pharmacokinetic modelling can be utilized via exploration of the imprecision, bias and probability of an informative experiment to evaluate if a design meets the goal of Reduction. In this report a recommendation of the first in vivo pharmacokinetic experiment is presented. This is based on in vitro values and physicochemical properties that are common in anti-tuberculosis drugs. If the probability of an informative experiment is critical, a terminal sampling of 40 mice is recommended. If imprecision and bias are necessary, zipper sampling of 10 mice is recommended.

Page generated in 0.0489 seconds