401 |
Supported catalysts, from polymers to gold nanoparticles supportsSommer, William J. 10 July 2007 (has links)
In today s world, the need to limit the use of nonrenewable resources and the importance of recycling has been recognized. One important contribution of chemists toward the general goal of limiting their use is to find catalysts that can be reused and recycled thereby limiting the need for expensive metal precursors and metal waste. Strategies to recycle catalysts are multifold and range from the employment of soluble polymers as catalyst supports to the use of membrane-encapsulated catalyst. The use of soluble polymers as a support not only offers the advantage of being soluble under the catalytic reaction conditions but also, to be removable by changing the conditions of the surrounding media. Despite the great potential of these soluble supported catalysts, their use is very limited in today s synthesis. In addition, no set of rules have been established to guide the synthesis of efficient supported catalysts. In order to establish a tool box for the synthesis of supported catalysts, the study of several parameters such as the choice of the support and the choice and the stability of the catalyst are necessary. To establish this set of rules, a limited number of catalytic transformations, were studied. These catalytic reactions are the Heck-Mizoroki, Suzuki-Miyaura and Sonogashira coupling reactions. These transformations became fundamental for the synthesis of drugs and materials. The first and second chapters provide background information by describing and evaluating the main supports that were previously used for catalysts and the two main catalysts that are used in this thesis, the palladium pincer complex and the palladium N-heterocyclic complex. In chapter 3, the synthesis of a soluble polymer supported catalyst is described. The polymer chosen for the study is poly(norbornene), and the catalyst is a 1,3-disubstituted benzene ligand with sulfurs in the side-chains able to chelate to the metal center, better known as pincer ligand. These ligands are abbreviated by the three atoms that coordinate to the metal center, in this study, SCS. The metal used for the investigation of the activity of this supported pincer is palladium. The importance of the nature of the linkage on the stability of the Pd-SCS pincer complex has been reported in the literature, leading to the synthesis of Pd-SCS pincer complex tethered to the polymer via an ether and an amide linkage. The synthesized poly(norbornene) supported Pd-SCS pincer complexes were evaluated using the Heck transformation of iodobenzene with n-butyl acrylate. Kinetic studies and leaching tests using poly(vinyl pyridine) and mercury were carried out resulting in the conclusion that the active species during the catalysis is not the palladium pincer complex but a leached palladium (0) species. In chapter 4, Pd-PCP pincer complexes with the ether and amide tether were synthesized. Kinetic and poisoning studies were carried out resulting in a similar conclusion. Furthermore, 31P NMR experiments were conducted to investigate the unstability of the complex. Following this study, in-situ XAS as well as computational calculations were carried out. The conclusion from this sinvestigation argues that triethylamine is a key ingredient for the decomposition of the Pd-PCP complex. The overall conclusion from these two different studies is thta Pd(II) pincer complexes decomposes during the Heck reaction when triethylamine is used for the coupling of iodobenzene to n-butyl acrylate in DMF at 120 ºC. Stemming from this investigation, a reported more stable complex, Pd-NHC, was tethered onto poly(norbornene). The system was evaluated using Suzuki-Miyaura, Heck and Sonogashira reactions. Similar poisoning and kinetic studies were utilized to investigate the stability of the supported NHC Pd complexes. The result of this investigation suggests that supported Pd-NHC complexes are stable under Suzuki-Miyaura and Sonogashira but decompose under Heck conditions. However, when the system was recycled, a decrease in activity for the Suzuki-Miyaura transformation and solubility was observed. In chapter 6, gold monolayer protected clusters (MPC) were investigated as potential candidates as supports. To examine the potential of MPC as a support, a NHC-Pd complex was graphted onto the particles. To functionalize the gold nanoparticles, a new method was developed. Using azide moieties added to the gold nanoparticles, the catalyst was added via microwave assisted 1,3 dipolar cycloaddition. The system was evaluated using Suzuki-Miyaura transformations under microwave conditions. The system exhibited quantitative conversions for a variety of substrates. However, when the system was recycled, aggregation of the particles and decrease in catalytic activity was observed. In summary, this thesis describes the synthesis and evaluation of poly(norbornene) supported Pd-pincer and Pd-NHC complexes and of gold nanoparticles supported Pd-NHC complex. It also detail the combination of kinetic and poisoning studies developed to evaluate a potential supported catalyst.
|
402 |
Survival Modelling Approach To Time To First Claim And Actuarial Premium CalculationAkbulut, Derya 01 March 2011 (has links) (PDF)
Health problems of the human beings in a society are one of the main components of the social security systems due to the dimension of the financial burden it might bring on individuals, employers, insurance companies and governments. Morbidity measures, such as incidence and prevalence of a specific disease in a certain population enable researchers to estimate for individuals the probability of being diagnosed or being prone to the diseases. This information is usually not tractable because of the non-availability of the convenient data or recordings for many countries as well as Turkey. Even if it is available, it is commonly limited with largely varying characteristics about the type and coverage of the diseases. In this regard, the pattern that a population follows for an acute disease may not be the same for chronic diseases. Having those indicators determined for a group of insureds will enable underwriters to have more profitable and economical premium calculation and precision on required reserve estimation.
v
Based on their characteristics such as acute or chronic behaviour, the gender, and the location of residency of people, the diseases show different behaviour on their occurrences. From the insurer
|
403 |
Catalytic combustion of gasified wasteKusar, Henrik January 2003 (has links)
<p>This thesis concerns catalytic combustion for gas turbineapplication using a low heating-value (LHV) gas, derived fromgasified waste. The main research in catalytic combustionfocuses on methane as fuel, but an increasing interest isdirected towards catalytic combustion of LHV fuels. This thesisshows that it is possible to catalytically combust a LHV gasand to oxidize fuel-bound nitrogen (NH3) directly into N2without forming NOX. The first part of the thesis gives abackground to the system. It defines waste, shortly describesgasification and more thoroughly catalytic combustion.</p><p>The second part of the present thesis, paper I, concerns thedevelopment and testing of potential catalysts for catalyticcombustion of LHV gases. The objective of this work was toinvestigate the possibility to use a stable metal oxide insteadof noble metals as ignition catalyst and at the same timereduce the formation of NOX. In paper II pilot-scale tests werecarried out to prove the potential of catalytic combustionusing real gasified waste and to compare with the resultsobtained in laboratory scale using a synthetic gas simulatinggasified waste. In paper III, selective catalytic oxidation fordecreasing the NOX formation from fuel-bound nitrogen wasexamined using two different approaches: fuel-lean andfuel-rich conditions.</p><p>Finally, the last part of the thesis deals with deactivationof catalysts. The various deactivation processes which mayaffect high-temperature catalytic combustion are reviewed inpaper IV. In paper V the poisoning effect of low amounts ofsulfur was studied; various metal oxides as well as supportedpalladium and platinum catalysts were used as catalysts forcombustion of a synthetic gas.</p><p>In conclusion, with the results obtained in this thesis itwould be possible to compose a working catalytic system for gasturbine application using a LHV gas.</p><p><b>Keywords:</b>Catalytic combustion; Gasified waste; LHVfuel; RDF; Biomass; Selective catalytic oxidation; NH3; NOX;Palladium; Platinum; Hexaaluminate; Garnet; Spinel;Deactivation; Sulfur; Poisoning</p>
|
404 |
Development of a regeneration procedure for commercial automotive three-wy catalystsBirgersson, Henrik January 2004 (has links)
<p>Car exhaust catalysts were introduced in the early 1980’s, to limit the release of pollutants such as hydrocarbons, carbon monoxides and nitrogen oxides. These catalysts contain noble metals such as palladium (Pd), platinum (Pt) and rhodium (Rh) and are able to simultaneously abate all three of the above-mentioned pollutants, hence the name three-way catalyst (TWC). The exposure to high temperatures (800-1000 °C) during operation and the presence of additives in petrol such as lead, calcium, silicon, magnesium, manganese, chromium, sulphur and phosphorus will after a certain time start to lower the overall effectiveness of the catalyst. These effects are either of a mechanical or a chemical nature. High temperatures reduce the active area by causing the noble metals to agglomerate and sinter whereas the additives alter the activity by either fouling the pores of the support material (phosphorus) or by interacting with the metals (sulphur and lead).</p><p>The main objective of this work was to develop a method to redisperse the catalytically active sites, comprising Pd, Pt and Rh on the washcoat surface, in an effort to regain lost catalyst activity. For this purpose, a wide spectrum of different commercial car exhaust catalysts containing varying noble metal loadings, aged under various driving conditions and with mileages ranging from 30 to 100 000 km were evaluated.</p><p>The influence of a thermal treatment in a controlled gas atmosphere, such as oxygen or hydrogen and a redispersing agent, e.g. chlorine, on the activity of TWC was investigated by means of laboratory-scale activity measurements. Several complementary characterisation methods such as SEM/TEM, XRD, BET and TPR were used to verify the effects of the regeneration treatments on the catalyst morphology (Paper I). Partial regeneration of catalyst activity and noble metal dispersion was achieved after thermal treatment in an oxygen-chlorine rich atmosphere at temperatures below 500 °C.</p><p>Finally, an investigation of the effects of an oxy-chlorine thermal treatment for regeneration of a ‘full-scale’ commercial automotive three-way catalyst was performed. Catalyst activity and performance prior to and after the oxy-chlorine thermal treatment was measured on a test vehicle in accordance with the European driving cycle (EC2000). The catalyst surface was further characterised using XRD and EDX (Paper II). Improved catalyst activity for a high mileage catalyst could be observed, with emissions lowered by approximately 30 to 40 vol% over the EC2000 driving cycle</p>
|
405 |
The Epidemiology and Surveillance of Ciguatera Fish Poisoning in the Turks and Caicos IslandsSchneider, Evan 11 September 2012 (has links)
Innovative ways to conduct disease surveillance are required to address the complexity of Ciguatera Fish Poisoning (CFP). Mixed methods were employed to explore CFP epidemiology and interdisciplinary approaches to its surveillance in the Turks and Caicos Islands (TCI). Quantitative analyses of cross-sectional data collected by the TCI’s National Epidemiology and Research Unit in 2010 demonstrated that a low percentage of residents reported lifetime histories of illness following fish consumption (3.9%). Furthermore, gender, age, island, and home remedy use were significantly associated with reported clinic visitation by ill individuals. Next, a multisectoral CFP surveillance model was conceptualized. A qualitative exploration of the model’s hypothetical integration into TCI’s health system revealed that several systemic and contextual factors could influence the future uptake of interdisciplinary CFP surveillance. Targeted interventions are recommended to improve national CFP surveillance and to facilitate the growth of interdisciplinary networks between stakeholders from TCI’s health, fisheries and environment sectors. / Canadian Institutes of Health Research, Ontario Veterinary College, University of Guelph, Ministry of Health and Human Resources of the Turks and Caicos
|
406 |
Applications for Molten Carbonate Fuel CellsRexed, Ivan January 2014 (has links)
Molten Carbonate Fuel cells are high temperature fuel cells suitable for distributed generation and combined heat and power, and are today being installed on commercial basis in sizes from 100kW to several MW. Novel applications for MCFC which have attracted interest lately are MCFC used for CO2 separation from combustion flue gas, and high temperature electrolysis with reversible fuel cells. In the first application, the intrinsic capability of the MCFC to concentrate CO2 from the cathode to the anode side through the cell reaction is utilized. In the second application, the high operating temperature and relatively simple design of the MCFC is utilized in electrolysis, with the aim to produce a syngas mix which can be further processed into hydrogen of synthetic fuels. In this thesis, the effect on fuel cell performance of operating a small lab-scale molten carbonate fuel cell in conditions which simulate those that would apply if the fuel cell was used for CO2 separation in combustion flue gas was studied. Such operating conditions are characterized especially by a low CO2 concentration at the cathode compared to normal operating conditions. Sulfur contaminants in fuel gas, especially H2S, are known poisoning agents which cause premature degradation of the MCFC. Furthermore, combustion flue gas often contains sulfur dioxide which, if entering the cathode, causes performance degradation by corrosion and by poisoning of the fuel cell. This makes poisoning by sulfur contaminants of great concern for MCFC development. In this thesis, the effect of sulfur contaminants at both anode and cathode on fuel cell degradation was evaluated in both normal and in low CO2 simulated flue gas conditions. The results suggested that the poisoning effect of SO2 at the cathode is similar to that of H2S at the anode, and that it is possibly due to a transfer of sulfur from cathode to anode. Furthermore, in combination with low CO2 conditions at the cathode, SO2 contaminants cause fuel cell poisoning and electrolyte degradation, causing high internal resistance. By using a small lab-scale MCFC with commercial materials and standard fuel cell operating conditions, the reversible MCFC was demonstrated to be feasible. The electrochemical performance was investigated in both fuel cell (MCFC) and electrolysis cell (MCEC) modes. The separate electrodes were studied in fuel cell and electrolysis modes under different operating conditions. It was shown that the fuel cell exhibited lower polarization in MCEC mode than in MCFC mode, and a high CO2 concentration at the fuel cell anode reduced the polarization in electrolysis mode, which suggested that CO2 is reduced to produce CO or carbonate. / Smältkarbonatbränsleceller (MCFC) är en typ av högtemperaturbränsleceller som är anpassade för kombinerad el- och värmeproduktion i mellan-till stor skala. Idag installeras MCFC på kommersiell basis i storlekar mellan 100kW och flera MW. En ny typ av tillämpning för MCFC som har väckt intresse på senare tid är användandet av MCFC för CO2-avskiljning i kombination med konventionell elproduktion genom förbränning. En annan ny tillämpning är högtemperaturelektrolys genom användandet av reversibla bränsleceller. I det första fallet utnyttjas att CO2 kan koncentreras från katod- till anodsidan, vilket sker genom cellreaktionen för MCFC. I det andra fallet utnyttjas den höga arbetstemperaturen och den relativt enkla cell-designen för att använda reversibla MCFC till elektrolys, med syfte att producera en syngas-blandning som kan förädlas till vätgas eller till syntetiskt bränsle. I denna avhandling studeras effekten på bränslecellens prestanda genom att operera en MCFC i lab-skala med driftförhållanden som simulerar de som förväntas uppkomma om bränslecellen användes för CO2-avskiljning ur rökgaser från förbränning. Dessa driftförhållanden karaktäriseras av låg CO2-koncentration på katodsidan jämfört med normal drift. Svavelföroreningar i bränsle, speciellt H2S, är kända för att orsaka förgiftning av anoden, vilket i sin tur försämrar bränslecellens prestanda. Dessutom innehåller rökgaser ofta SO2, vilket antas orsaka korrosion och förgiftning av katoden. Detta gör effekten av svavelföroreningar till ett prioriterat ämne för utvecklingen av MCFC. I denna avhandling undersöks effekten av svavelföroreningar på både anod- och katodsidan, i normala driftförhållanden och i förhållanden med låg CO2 som simulerar användandet av rökgaser för CO2-avskiljning. Resultaten tyder på att effekten av förgiftning med SO2 på katoden liknar den med H2S på anoden, och att detta kan vara orsakat av en transport av svavel från katod till anod. Vidare, i kombination med låg CO2 koncentration på katoden så orsakar SO2-föroreningar elektrolytdegradering, vilket orsakar hög inre resistans. Genom att använda en liten MCFC i lab-skala med kommersiella material och standardförhållanden för MCFC påvisades att reversibla smältkarbonatbränsleceller kan vara ett lovande koncept. Den elektrokemiska prestandan av både cell och separata elektroder undersöktes både som bränslecell (MCFC)och vid elektrolys (MCEC). Resultaten visade att cellen uppvisade lägre polarisation vid elektrolys än som bränslecell, och att ten hög CO2-koncentration på det som är bränslecellens anodsida gav upphov till en minskad elektrodpolarisation, vilket indikerar att CO2 reduceras för att producera CO eller karbonat. / <p>QC 20141028</p>
|
407 |
Development of SOFC anodes resistant to sulfur poisoning and carbon depositionChoi, Song Ho 14 November 2007 (has links)
The surface of a dense Ni-YSZ anode was modified with a thin-film coating of niobium oxide (Nb2O5) in order to understand the mechanism of sulfur tolerance and the behavior of carbon deposition. Results suggest that the niobium oxide was reduced to NbO2 under operating conditions, which has high electrical conductivity. The NbOx coated dense Ni-YSZ showed sulfur tolerance when exposed to 50 ppm H2S at 700°C over 12 h. Raman spectroscopy and XRD analysis suggest that different phases of NbSx formed on the surface. Further, the DOS (density of state) analysis of NbO2, NbS, and NbS2 indicates that niobium sulfides can be considered as active surface phases in the H2S containing fuels. It was demonstrated that carbon formation was also suppressed with niobium oxide coating on dense Ni-YSZ in humidified CH4 (3% H2O) at 850ºC. In particular, under active operating conditions, there was no observable surface carbon as revealed using Raman spectroscopy due probably to electrochemical oxidation of carbon. Stable performances of functional cells consisting of Pt/YSZ/Nb2O5 coated dense Ni-YSZ in the fuel were achieved; there was no observable degradation in performance due to carbon formation. The results suggest that a niobium oxide coating has prevented carbon from formation on the surface probably by electrochemically oxidation of carbon on niobium oxide coated Ni-YSZ.
On the other hand, computational results suggest that, among the metals studied, Mo seems to be a good candidate for Ni surface modification. Ni-based anodes were modified with Mo using wet-impregnation techniques, and tested in 50 ppm H2S-contaminated fuels. It was found that the Ni-Mo/CeO2 anodes have better sulfur tolerance than Ni, showing a current transient with slow recovery rather than slow degradation in 50 ppm H2S balanced with H2 at 700°C.
|
408 |
Correlation of fecal ergovaline, lolitrem B, and their metabolites in steers fed endophyte infected perennial ryegrass strawMurty, Lia D. 21 November 2012 (has links)
Perennial ryegrass (PRG, Lolium perenne) is a hardy cool-season grass that is infected with the endophytic fungus Neotyphodium lolii, which enables the plant to be insect repellant and drought resistant, lowering the use of insecticides and fertilizers. However, this fungus produces the compound lolitrem B (LB, m/z 686.4) which causes the tremorgenic neurotoxicity syndrome 'ryegrass staggers' in livestock consuming forage which contains <2000 ppb LB. Ergovaline (EV, m/z 534) is a vasoconstrictor normally associated with tall fescue (Festuca arudinacea), but has also been found in endophyte-infected PRG. Past research has shown a strong linear correlation between levels of LB and EV in PRG. The purpose of this study was to examine the linear relationship between EV and LB in feces and determine common metabolites. To accomplish this, four groups of steers (n=6/group) consumed endophyte- infected PRG over 70 days consumed the following averages of LB and EV: group I 2254ppb LB/633 ppb EV; group II 1554ppb LB/ 373ppb EV, group III 1011ppb LB/259ppb EV, and group IV 246ppb LB/<100ppb EV. Group I in week 4 was inadvertently given a washout period at which time the steers consumed the amount of LB and EV given to group IV (control). Both feed and feces samples were extracted using difference solid phase extraction methods and quantified by
HPLC-fluorescence for LB and EV. Concentrations of EV and LB obtained through HPLC-fluorescence in both PRG and feces showed a linear relationship. Additional screening for metabolites was conducted LC-MS/MS and showed possible oxidation and reduction metabolites for both toxins. / Graduation date: 2013
|
409 |
Lead exposure in free-ranging kea (Nestor notabilis), takahe (Porphyrio hochstetteri) and Australasian harriers (Circus approximans) in New Zealand : a thesis presented in partial fulfillment of the requirements for the degree of Masters of Veterinary Science in Wildlife Health at Massey University, Palmerston North, New ZealandYoul, Jennifer Marie January 2009 (has links)
Lead is a highly toxic metal that has been used by humans for over 2000 years. Over this time it has become increasingly apparent that despite its usefulness, lead is one of the most highly toxic substances known to man. Current research into lead exposure of humans focuses on low-level chronic exposure and its effects on learning and behaviour. However, investigations into lead exposure of wildlife are still focussed on mortalities, particularly of waterfowl and raptors, with little known about low-level exposures or the effects on other species. This study examines the exposure of free-ranging kea (Nestor notabilis) from the Aoraki/ Mt Cook village and national park, takahe (Porphyrio hochstetteri) from Tiritiri Matangi, Kapiti and Mana Islands, and the lead associated syndrome of clenched-claw paralysis and leg paresis in harriers (Circus approximans) in New Zealand. Thirty-eight kea had detectable blood lead with concentrations ranging from 0.028 mg/L to 3.43 mg/L (mean = 0.428 mg/L ± 0.581). Analysis of tissue samples found that seven of 15 birds died with elevated tissue lead. Lead exposure may be an important contributing factor in kea mortality. As a result of these findings, lead abatement in areas frequented by kea is being considered. Eighteen of 45 takahe had detectable blood lead concentrations ranging from 0.015 mg/L to 0.148 mg/L (mean = 0.028 mg/L ± 0.042). Analysis of tissue samples from offshore island and Murchison Mountains birds found that all had detectable lead. Despite levels of lead exposure in the population being low and unlikely to result in overt clinical signs, it is widespread and there may be significant exposure of birds living around old buildings. An investigation into the clinical signs, pathology and response to treatment of clenched-claw paralysis and leg paresis in wild harriers was carried out. Harriers with clenched feet had significantly higher blood lead concentrations than those without. In conclusion, lead is a major factor in the expression of this clinical syndrome but other factors not yet identified are playing a role. This study demonstrates that lead is widespread in the New Zealand environment exposing a diverse range of avifauna, and has made some progress towards exploring some of its effects on health and survival.
|
410 |
Postmortem toxicology : aspects on interpretation /Holmgren, Per, January 2004 (has links) (PDF)
Diss. (sammanfattning) Linköping : Univ., 2004. / Härtill 4 uppsatser.
|
Page generated in 0.0358 seconds