141 |
Microstructure, texture and mechanical property evolution during additive manufacturing of Ti6Al4V alloy for aerospace applicationsAntonysamy, Alphons Anandaraj January 2012 (has links)
Additive Manufacturing (AM) is an innovative manufacturing process which offers near-net shape fabrication of complex components, directly from CAD models, without dies or substantial machining, resulting in a reduction in lead-time, waste, and cost. For example, the buy-to-fly ratio for a titanium component machined from forged billet is typically 10-20:1 compared to 5-7:1 when manufactured by AM. However, the production rates for most AM processes are relatively slow and AM is consequently largely of interest to the aerospace, automotive and biomedical industries. In addition, the solidification conditions in AM with the Ti alloy commonly lead to undesirable coarse columnar primary β grain structures in components. The present research is focused on developing a fundamental understanding of the influence of the processing conditions on microstructure and texture evolution and their resulting effect on the mechanical properties during additive manufacturing with a Ti6Al4V alloy, using three different techniques, namely; 1) Selective laser melting (SLM) process, 2) Electron beam selective melting (EBSM) process and, 3) Wire arc additive manufacturing (WAAM) process. The most important finding in this work was that all the AM processes produced columnar β-grain structures which grow by epitaxial re-growth up through each melted layer. By thermal modelling using TS4D (Thermal Simulation in 4 Dimensions), it has been shown that the melt pool size increased and the cooling rate decreased from SLM to EBSM and to the WAAM process. The prior β grain size also increased with melt pool size from a finer size in the SLM to a moderate size in EBSM and to huge grains in WAAM that can be seen by eye. However, despite the large difference in power density between the processes, they all had similar G/R (thermal gradient/growth rate) ratios, which were predicted to lie in the columnar growth region in the solidification diagram. The EBSM process showed a pronounced local heterogeneity in the microstructure in local transition areas, when there was a change in geometry; for e.g. change in wall thickness, thin to thick capping section, cross-over’s, V-transitions, etc. By reconstruction of the high temperature β microstructure, it has been shown that all the AM platforms showed primary columnar β grains with a <001>β.
|
142 |
Funkcionalizované mikroporézní polymerní sítě připravené z ethynylarenů / Functionalized microporous polymer networks prepared from ethynylarenesStahlová, Sabina January 2016 (has links)
The preparation of a new group of functionalized conjugated polymer networks has been described based on spontaneous quaternization polymerization of ethynylpyridines with bis(bromomethyl)arenes. The networks consisted of polyacetylene chains with pyridyl and pyridiniumyl pendants cross-linked with -CH2(arylene)CH2- links. The variation of the ratio of monomer and quaternization agent in the feed modified the ratio of pyridyl and pyridiniumyl groups in the networks (pyridyl/pyridiniumyl ratios from 0 to 1.32). The networks did not exhibit a permanent microporosity that could be confirmed by nitrogen adsorption at 77 K. Nevertheless, all networks were active in capture of CO2 at 293 K (up to 0.73 mmol CO2/g, 750 Torr). It has been hypothesized that CO2 capture reflected formation of a temporary porous texture of the networks through conformational changes of the network segments enabled by the segments mobility at room temperature. The preparation of functionalized conjugated polymer networks with permanent micro/mesoporosity (SBET up to 667 m2 /g) has been described that was based on chain coordination copolymerization of acetylenic monomers. The copolymerization of 1,4-diethynylbenzene or 4,4'-diethynylbiphenyl with mono or diethynylbenzenes bearing NO2 or CH2OH groups has been demonstrated as...
|
143 |
Ausgewählte Eigenschaften des Sporopollenins der KieferBohne, Guido 27 February 2007 (has links)
Gegenstand der Arbeit sind Zusammenhänge zwischen physikochemischen Eigenschaften und Funktionen der Exine bei Ausbreitung, Bestäubung und Befruchtung. Dabei bewährte sich der Einsatz der 3-kammrigen Sporopolleninkapseln (Zentralkapsel und Sacci) in der Permeationschromatographie. Sowohl kinetisch bedingte chromatographische Dispersion kleiner Moleküle als auch Konzentrationsänderungen von Zuckern und Dextranmolekülen im Medium wurden zur Bestimmung von Permeabilitätskoeffizienten der Nexine genutzt. Die Wasserabsorptionskapazität von Exinefragmenten und die hydraulische Leitfähigkeit der Nexine wurden anhand von Konzentrationsänderungen ausgeschlossener Dextranmoleküle ermittelt. Das Tectum der saccalen Sexine ist eine Mikrofiltermembran mit scharfer Trenngrenze im Submikrometerbereich; daher werden an den Sacci nur Hydrokolloide mit Stokes''schen Radius über 100 nm (z.B. aus nativem Dextran) ausgeschlossen. Die Nexine ist eine nicht-ideale Umkehrosmose-Membran, die in Zucker- und Salzlösungen hohe Reflexionskoeffizienten zeigt; zusätzlich besitzt sie wenige große Poren, die den Austausch von Zuckern und selbst kleinen Polymermolekülen ermöglichen. Die hydraulische Leitfähigkeit der Nexine liegt im Größenbereich derjenigen von Plasmamembranen (0,39-0,48 µm s-1 MPa-1); die Ergebnisse zeigen, dass die Exine weder die Nährstoffaufnahme des Sporoplasten aus der lokulären Flüssigkeit noch dessen rasche Rehydratation in der Mikropyle behindert. Die Einfaltungen der distalen Nexine (oberhalb der Sacci) und die Omega-Faltung der Exine zwischen den Sacci (Leptom) bieten beim Quellvorgang Schutz vor zu schneller Flächenausdehnung der Plasmamembran. Der Corpus kann mit konzentrierten Elektrolytlösungen beladen werden. Beim anschließenden osmotischen Schwellen in Wasser reißt die Exine, und der Sporoplast wird mit anhaftender Intine ausgeschleudert. Wasser und andere polare Flüssigkeiten adhärieren stärker als hydrophobe Flüssigkeiten an Sporopollenin. Die Sporopolleninmatrix weist eine hohe Feststoffdichte auf, ist wenig quellfähig (0,18 mL g-1 TM) und deformationsstabil. Dies ermöglicht die Pulverbildung beim Trocknen. / Subject of this thesis are relationships between physicochemical properties and functions of the exine concerning propagation, pollination and fecundation. Here the application of the 3-chambered sporopollenin-microcapsules (central capsule and sacci) in permeation chromatography proved of value. Both the kinetically dependent dispersion of small molecules and changes in concentration of sugars and dextran molecules in the medium were analysed to determine permeability coefficients of the nexine. The water absorption capacity of exine fragments and the hydraulic conductance of the nexine were calculated by means of changes in concentrations of excluded dextran molecules. The tectum of the saccal sexine is a microfiltration membrane with a sharp cut off in the submicrometer range; thus hydrocolloids with Stokes´radii over 100 nm (e.g. from native dextran) are excluded from the sacci. The nexine is a non-ideal reverse osmosis membrane having high reflexion coefficients in sugar and salt solutions; in addition few large pores allow the exchange of sugars and even of small polymers. The hydraulic conductance of the nexine is in the range typically for plasmamembranes (0.39-0.48 µm s-1 MPa-1); the results indicate that the exine does neither obstruct the uptake of nutrients by the sporoplast from the locular fluid nor hinder the rapid rehydration in the micropyle. When rehydrating, the distal foldings of the nexine (above the sacci) and the omega-like folding of the exine between the sacci (leptom), provide protection for the plasmamembrane when its surface area has to increase too rapidly. The corpus can be loaded with a concentrated electrolyte solution. When subsequently transferred into water the exine rupture and the sporoplast along with the intact intine is ejected. Water and other polar liquids adhere stronger to sporopollenin than hydrophobic ones. The matrix of sporopollenin show a high density in its solid content, water absorption capacity is low (0.18 mL g-1 DM) and it is resistant to deformation. This enable the formation of powder while dehydrating.
|
Page generated in 0.0255 seconds