• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anaerobic Co-digestion of Chicken Processing Wastewater and Crude Glycerol from Biodiesel

Foucault, Lucas Jose 2011 August 1900 (has links)
The main objective of this thesis was to study the anaerobic digestion (AD) of wastewater from a chicken processing facility and of crude glycerol from local biodiesel operations. The AD of these substrates was conducted in bench-scale reactors operated in the batch mode at 35°C. The secondary objective was to evaluate two sources of glycerol as co-substrates for AD to determine if different processing methods for the glycerol had an effect on CH₄ production. The biogas yields were higher for co-digestion than for digestion of wastewater alone, with average yields at 1 atmosphere and 0°C of 0.555 and 0.540 L (g VS added)⁻¹, respectively. Another set of results showed that the glycerol from an on-farm biodiesel operation had a CH₄ yield of 0.702 L (g VS added)⁻¹, and the glycerol from an industrial/commercial biodiesel operation had a CH₄ yield of 0.375 L (g VS added)⁻¹. Therefore, the farm glycerol likely had more carbon content than industrial glycerol. It was believed that the farm glycerol had more impurities, such as free fatty acids, biodiesel and methanol. In conclusion, anaerobic co-digestion of chicken processing wastewater and crude glycerol was successfully applied to produce biogas rich in CH₄.
2

Recovery Of Sericin Protein From Silk Processing Wastewaters By Membrane Technology

Aygun, Saniye Seylan 01 July 2008 (has links) (PDF)
Cocoon cooking wastewaters (CW) and silk degumming wastewaters (SDW) of silk processing industry were treated by membrane processes for sericin recovery. CW contains only sericin while SDW contains both sericin and soap. Sericin in CW had four molecular weight (MW) fractions / 175-200 kDa (Sericin-1), 70-90 kDa (Sericin-2), 30-40 kDa (Sericin-3) and 10-25 kDa (Sericin-4). Two alternative process trains were developed for CW / 1. centrifugation + microfiltration + nanofiltration + precipitation, 2. centrifugation + microfiltration + nanofiltration + dialysis + precipitation. In the first process, a sericin/silkworm protein mixture was obtained with a sericin content of 39-46%. In the second one, however, a pure sericin product was obtained. The sericin recovery efficiency of the developed process train was found as 76%. Severe flux declines of 70-75% were observed in NF stage in both process trains. However, cleaning with 0.5 M NaOH and 190-200 mg/L free chlorine restored the fluxes by 83-127%. The MW of sericin in SDW was 110-120 kDa. The soap and sericin were separated in the pre-treatment stage consisting of centrifugation (pH 3.5, 10 min) and gravity settling (4 oC, 24 h). The ultrafiltration membrane with molecular weight cut-off of 5 kDa achieved 59% sericin recovery at pH 3.5, accompanied by severe flux decline of 88%. Furthermore, clean water flux was restored by only 31% via chemical cleaning.
3

Biological treatment of turkey processing wastewater with sand filtration

Kang, Young Woon 11 March 2004 (has links)
No description available.
4

Alternative Waste Treatment System for Poultry Processing Plants

Roshdieh, Rana 30 December 2010 (has links)
The objective of this research was to design an alternative wastewater treatment system for turkey processing plants to recover energy and reduce N and P to allowable discharge levels. The objective included: 1. Determine the quantity and quality of biogas produced from the turkey processing wastewater (TPW) and COD reduction efficiency. 2. Design a waste treatment system and validate proof of concept for simultaneous P and N removal with a goal of attaining effluent concentrations of 0.1 mg/L and 4 mg/L, for P and N, respectively. A lab-scale complete mixed anaerobic digester was used for turkey processing wastewater (TPW) digestion and biogas recovery running for 6 months. Along with the anaerobic digester, a two-sludge system called A2N-SBR consisting of an anaerobic-anoxic sequencing batch reactor and an attached growth post-nitrification reactor was added for biological nitrogen and phosphorus removal running for 3 months. Biogas production yields of 778 + 89 mL/gVSadded and 951.30 mL/g COD were obtained through anaerobic digestion. Also, an energy balance was conducted on a pilot scale digester for a turkey processing plant with wastewater production of 2160 m3/d and using a combined heat and power (CHP) enginefor conversion of biogas to heat and electricity. Although the biogas yield achieved in a complete mixed reactor was relatively lower than yields obtained in previous studies using reactors such as UASB, still a complete mixed reactor can be a good choice for biogas recovery from TPW and can be used for codigestion with some specific turkey processing byproducts for biogas recovery. Nitrogen and phosphorus removal in the A2N-SBR system were 47% and 75%, respectively, and during the study the nitrogen and phosphorus removal mean concentration in effluent did not meet the nutrient limits specified in the objectives. Average TP and TN in the effluent were 3.2 mg/L and 137 mg/L, respectively. Throughout the study, the nitrification reactor biofilm was not completely developed. Incomplete nitrification and poor settling might be the reasons that quality obtained in effluent was low. To improve the process condition in A2N-SBR, online monitoring of pH, dissolved oxygen (DO) and oxidation reduction potential (ORP) can help to optimize each stage in the SBR and stages duration can be set based on the results. / Master of Science
5

Produção de hidrogênio e etanol através da fermentação acidogênica de águas residuárias agroindustriais em reator anaeróbio de leito fluidizado

Rosa, Paula Rúbia Ferreira 28 March 2014 (has links)
Made available in DSpace on 2016-06-02T19:55:39Z (GMT). No. of bitstreams: 1 5956.pdf: 2655473 bytes, checksum: dfaa0329652cfa24fb1dd3934c5b664b (MD5) Previous issue date: 2014-03-28 / Universidade Federal de Sao Carlos / The aim of this study was to evaluate the influence of hydraulic retention time (HRT), the origin of different inoculum (sludge from a UASB reactor for swine wastewater treatment and poultry slaughterhouse), and different carbon source (glucose, cassava processing wastewater and cheese whey) on the stability and efficiency of the anaerobic fluidized bed reactor (AFBR) for producing hydrogen. Twelve identical reactors were used, and in two reactors the mixture of glucose with cheese whey (R1S, R2S) was used as a substrate, six reactors were used with mix cassava processing wastewater and glucose (R1M, R2M, R3M and R4M). It was evaluated use of cheese whey (R3S, R4S, R5s and R6S) and cassava processing wastewater (R5M and R6M). The AFBRs were inoculated with sludge from a UASB reactor used in the treatment of swine wastewater (R1S, R3S, R1M, R3M, R5S, R6S, R5M and R6M) and sludge from a UASB reactor that treated poultry slaughterhouse wastewater (R2S, R4S, R2M, R4M), both heat treated. Variations of HRT (12-1 h) and substrate concentrations were performed (2-15 g .L -1), with temperature control at 30 ° C. The reactors that used cheese whey as substrate showed a greatest potential for hydrogen production, with yields (HY) of 3.2 mmolH2.g-1COD (R6S) and 2.6 mmolH2.g-1COD (R5S) were obtained by applying a HRT of 6 and 14 hours, with a concentration of 3 and 5 g.L-1, respectively. Both substrates showed potential for the production of ethanol with yields (EtOHY) of 4.2 mmolEtOH.g-1COD (R6M) and 3.5 mmolEtOH.g-1COD (R2S). In the comparison between the two inocula used, both showed a balance in terms of hydrogen production, but in terms of ethanol production, the sludge from poultry slaughterhouse showed highest potential. By cloning and sequencing of the 16S rRNA gene for bacteria domain reactor R4S (whey), there was a predominance of the genus Selenomonas (69 % of the sequences) and Clostridium (8 % of the sequences). For the reactor R3M (glucose and cassava) analyzes cloning and sequencing of bacterial consortium revealed similarities with Lactobaccilus. As for the archaeal domain, the sequencing of the 16S rRNA gene had highly similar to the genus Methanobacterium (98.5 % and 95 % of the sequences), for R4S and R3M, respectively reactors. / O objetivo deste estudo foi avaliar a influência do tempo de detenção hidráulica (TDH), da origem de diferentes inóculos (lodo de suínos e lodo de aves), e da fonte de carbono (glicose, manipueira e soro de queijo) sobre a estabilidade e eficiência do reator anaeróbio de leito fluidizado (RALF) na produção de hidrogênio e etanol. Foram utilizados doze reatores idênticos, sendo que em dois reatores foram utilizados mistura de glicose com soro de queijo (R1S, R2S), seis reatores foram utilizados a mistura de água do processamento da mandioca (manipueira) e glicose (R1M, R2M, R3M e R4M). Também foi avaliado o uso individual do soro de queijo (R3S, R4S, R5S e R6S) e da manipueira (R5M e R6M). Os RALFs foram inoculados com lodo proveniente do tratamento de águas residuárias de suinocultura (R1S, R3S, R1M, R3M, R5S, R6S, R5M e R6M) e de águas residuárias do abatedouro de aves (R2S, R4S, R2M, R4M), ambos tratados termicamente. Foram realizadas variações de TDH (14-1 h) e concentrações de substrato (2- 15 g. L-1), com controle de temperatura a 30°C. Os reatores que utilizaram soro de queijo como substrato apresentaram um maior potencial para a produção de hidrogênio, com rendimentos (HY) de 3,2 mmolH2.g-1DQO (R6S) e 2,6 mmolH2.g-1DQO (R5S), por meio da aplicação de um TDH de 6 e 14 horas, com uma concentração de 3 e 5 g.L-1, respectivamente. Ambos os substratos apresentaram potencial para a produção de etanol, com rendimentos (EtOHY) de 4,2 mmolEtOH.g-1DQO (R6M) e 3,5 mmolEtOH.g-1DQO (R2S). Na comparação entre os dois inóculos utilizados, ambos apresentaram um equilíbrio em termos de produção de hidrogênio, porém em termos de produção de etanol, o lodo proveniente do abatedouro de aves apresentou um maior potencial. Por meio da clonagem e sequenciamento do gene RNAr 16S para o domínio bactéria do reator R4S (soro de queijo), houve a predominância do gênero Selenomonas (69% das sequências) e do gênero Clostridium (8% das sequências). Para o reator R3M (glicose e manipueira) as análises de clonagem e sequenciamento do consórcio bacteriano revelaram semelhanças com Lactobaccilus. Já para o domínio archaea, o sequenciamento do gene RNAr 16S, teve altas similaridades com gênero Methanobacterium (98,5% e 95% das sequências), para os reatores R4S e R3M, respectivamente.
6

Reverse Osmosis as a Chemical-Free Technology for the Removal of Nutrients from Cure Meat Processing Wastewater

Henderson, Kelsey January 2019 (has links)
No description available.

Page generated in 0.3508 seconds