• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 18
  • 7
  • 2
  • 1
  • Tagged with
  • 116
  • 48
  • 45
  • 39
  • 33
  • 23
  • 22
  • 22
  • 21
  • 20
  • 20
  • 20
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Modeling of High-Dimensional Industrial Data for Enhanced PHM using Time Series Based Integrated Fusion and Filtering Techniques

Cai, Haoshu 25 May 2022 (has links)
No description available.
82

Trajectory Similarity Based Prediction for Remaining Useful Life Estimation

Wang, Tianyi 06 December 2010 (has links)
No description available.
83

Prognostics and Health Management of Engineering Systems Using Minimal Sensing Techniques

Davari Ardakani, Hossein 09 September 2016 (has links)
No description available.
84

A Comparative Study of Performance Assessment and Fault Diagnosis Approaches for Reciprocating Electromechanical Mechanism

Shi, Zhe 12 September 2016 (has links)
No description available.
85

Modeling of Machine Life Using Accelerated Prognostics and Health Management (APHM) and Enhanced Deep Learning Methodology

Jin, Wenjing January 2016 (has links)
No description available.
86

NSEA: n-Node Subnetwork Enumeration Algorithm Identifies Lower Grade Glioma Subtypes with Altered Subnetworks and Distinct Prognostics

Zhang, Zhihan 06 June 2017 (has links)
No description available.
87

Integration of Hidden Markov Modelling and Bayesian Networks for fault analysis of complex systems. Development of a hybrid diagnostics methodology based on the integration of hidden Markov modelling and Bayesian networks for fault detection, prediction and isolation of complex automotive systems

Soleimani, Morteza January 2021 (has links)
The complexity of engineered systems has increased remarkably to meet customer needs. In the continuously growing global market, it is essential for engineered systems to keep their productivities which can be achieved by higher reliability and availability. Integrated health management based on diagnostics and prognostics provides significant benefits, which includes increasing system safety and operational reliability, with a significant impact on the life-cycle costs, reducing operating costs and increasing revenues. Characteristics of complex systems such as nonlinearity, dynamicity, non-stationarity, and non-Gaussianity make diagnostics and prognostics more challenging tasks and decrease the application of classic reliability methods remarkably – as they cannot address the dynamic behaviour of these systems. This research has focused on detecting, predicting and isolating faults in engineered systems, using operational data with multifarious data characteristics. Complexities in the data, including non-Gaussianity and high nonlinearity, impose stringent challenges on fault analysis. To deal with these challenges, this research proposed an integrated data-driven methodology in which hidden Markov modelling (HMM) and Bayesian network (BN) were employed to detect, predict and isolate faults in a system. The fault detection and prediction were based on comparing and exploiting pattern similarity in the data via the loglikelihood values generated through HMM training. To identify the root cause of the faults, the probability values obtained from updating the BN were used which were based on the virtual evidence provided by HMM training and log-likelihood values. To set up a more accurate data-driven model – particularly BN structure – engineering analyses were employed in a structured way to explore the causal relationships in the system which is essential for reliability analysis of complex engineered systems. The automotive exhaust gas Aftertreatment system is a complex engineered system consisting of several subsystems working interdependently to meet emission legislations. The Aftertreatment system is a highly nonlinear, dynamic and non-stationary system. Consequently, it has multifarious data characteristics, where these characteristics raise the challenges of diagnostics and prognostics for this system, compared to some of the references systems, such as the Tennessee Eastman process or rolling bearings. The feasibility and effectiveness of the presented framework were discussed in conjunction with the application to a real-world case study of an exhaust gas Aftertreatment system which provided good validation of the methodology, proving feasibility to detect, predict, and isolate unidentified faults in dynamic processes.
88

Monitoring and Prognostics for Broaching Processes by Integrating Process Knowledge

Tian, Wenmeng 07 August 2017 (has links)
With the advancement of sensor technology and data processing capacities, various types of high volume data are available for process monitoring and prognostics in manufacturing systems. In a broaching process, a multi-toothed broaching tool removes material from the workpiece by sequential engagement and disengagement of multiple cutting edges. The quality of the final part, including the geometric integrity and surface finish, is highly dependent upon the broaching tool condition. Though there has been a considerable amount of research on tool condition monitoring and prognostics for various machining processes, the broaching process is unique in the following aspects: 1) a broaching process involves multiple cutting edges, which jointly contribute to the final part quality; 2) the resharpening and any other process adjustments to the tool can only be performed with the whole broaching tool or at least a whole segment of the tool replaced. The overarching goal of this research is to explore how engineering knowledge can be used to improve process monitoring and prognostics for a complex manufacturing process like broaching. This dissertation addresses the needs for developing new monitoring and prognostics approaches based on various types of data. Specifically, the research effort focuses on 1) the use of in-situ force profile data for real-time process monitoring and fault diagnosis, 2) degradation characterization for broaching processes on an individual component level based on image processing; and 3) system-level degradation modeling and remaining useful life prediction for broaching processes based on multiple images. / Ph. D.
89

Modeling and Experimental Validation of Mission-Specific Prognosis of Li-Ion Batteries with Hybrid Physics-Informed Neural Networks

Fricke, Kajetan 01 January 2023 (has links) (PDF)
While the second part of the 20th century was dominated by combustion engine powered vehicles, climate change and limited oil resources has been forcing car manufacturers and other companies in the mobility sector to switch to renewable energy sources. Electric engines supplied by Li-ion battery cells are on the forefront of this revolution in the mobility sector. A challenging but very important task hereby is the precise forecasting of the degradation of battery state-of-health and state-of-charge. Hence, there is a high demand in models that can predict the SOH and SOC and consider the specifics of a certain kind of battery cell and the usage profile of the battery. While traditional physics-based and data-driven approaches are used to monitor the SOH and SOC, they both have limitations related to computational costs or that require engineers to continually update their prediction models as new battery cells are developed and put into use in battery-powered vehicle fleets. In this dissertation, we enhance a hybrid physics-informed machine learning version of a battery SOC model to predict voltage drop during discharge. The enhanced model captures the effect of wide variation of load levels, in the form of input current, which causes large thermal stress cycles. The cell temperature build-up during a discharge cycle is used to identify temperature-sensitive model parameters. Additionally, we enhance an aging model built upon cumulative energy drawn by introducing the effect of the load level. We then map cumulative energy and load level to battery capacity with a Gaussian process model. To validate our approach, we use a battery aging dataset collected on a self-developed testbed, where we used a wide current level range to age battery packs in accelerated fashion. Prediction results show that our model can be successfully calibrated and generalizes across all applied load levels.
90

An online-integrated condition monitoring and prognostics framework for rotating equipment

Alrabady, Linda Antoun Yousef January 2014 (has links)
Detecting abnormal operating conditions, which will lead to faults developing later, has important economic implications for industries trying to meet their performance and production goals. It is unacceptable to wait for failures that have potential safety, environmental and financial consequences. Moving from a “reactive” strategy to a “proactive” strategy can improve critical equipment reliability and availability while constraining maintenance costs, reducing production deferrals, decreasing the need for spare parts. Once the fault initiates, predicting its progression and deterioration can enable timely interventions without risk to personnel safety or to equipment integrity. This work presents an online-integrated condition monitoring and prognostics framework that addresses the above issues holistically. The proposed framework aligns fully with ISO 17359:2011 and derives from the I-P and P-F curve. Depending upon the running state of machine with respect to its I-P and P-F curve an algorithm will do one of the following: (1) Predict the ideal behaviour and any departure from the normal operating envelope using a combination of Evolving Clustering Method (ECM), a normalised fuzzy weighted distance and tracking signal method. (2) Identify the cause of the departure through an automated diagnostics system using a modified version of ECM for classification. (3) Predict the short-term progression of fault using a modified version of the Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS), called here MDENFIS and a tracking signal method. (4) Predict the long term progression of fault (Prognostics) using a combination of Autoregressive Integrated Moving Average (ARIMA)- Empirical Mode Decomposition (EMD) for predicting the future input values and MDENFIS for predicting the long term progression of fault (output). The proposed model was tested and compared against other models in the literature using benchmarks and field data. This work demonstrates four noticeable improvements over previous methods: (1) Enhanced testing prediction accuracy, (2) comparable processing time if not better, (3) the ability to detect sudden changes in the process and finally (4) the ability to identify and isolate the problem source with high accuracy.

Page generated in 0.0259 seconds