• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 22
  • 8
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 86
  • 16
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

An investigation into the role of noradrenergic receptors in conditioned fear : relevance for posttraumatic stress disorder / Erasmus M.M.

Erasmus, Madeleine Monique January 2011 (has links)
Posttraumatic stress disorder is a debilitating anxiety disorder that can develop in the aftermath of a traumatic or life–threatening event involving extreme horror, intense fear or bodily harm. The disorder is typified by a symptom triad consisting of re–experiencing, hyperarousal and avoidance symptoms. Approximately 15–25% of trauma–exposed individuals go on to develop PTSD, depending on the nature and severity of the trauma. Although dysfunctional adaptive responses exist in multiple neurobiological pathways in the disorder, e.g. glutamate, GABA, glucocortocoids and serotonin, the noradrenergic system is particularly prominent and represents an important pharmacological target in attempts at preventing the development of PTSD posttrauma. However, current literature shows opposing and conflicting results regarding the effect of selective noradrenergic agents in memory processing, and the effect of modulation of selective noradrenergic receptors are spread over diverse protocols and paradigms of learning and fear also employing different strains of animals. Fear conditioning is a behavioural paradigm that uses associative learning to study the neural mechanisms underlying learning, memory and fear. It is useful in investigating the underpinnings of disorders associated with maladaptive fear responses. Performing fear conditioning experiments with the aim of applying it to an animal model of PTSD, and relating these behavioural responses to a defined neural mechanism, will assist both in the elucidation of the underlying pathology of the disease, as well as the development of more effective treatment. This project has set about to re–examine the diverse and complex role of noradrenergic receptors in the conditioned fear response with relevance to PTSD. To the best of my knowledge, this study represents the first attempt at studying a range of noradrenergic compounds with diverse actions and their ability to modify conditioned fear in a single animal model. This work thus introduces greater consistency and comparative relevance not currently available in the literature, and will also provide much needed pre–clinical evidence in support of treatment strategies targeting the noradrenergic system in the prevention of PTSD posttrauma. The first objective of this study was to set up and validate a passive avoidance fear conditioning protocol under our laboratory conditions using the Gemini Avoidance System. The noradrenergic system plays a prominent role in memory consolidation and fear conditioning, while administration of –adrenergic blockers, such as propranolol, have been shown to abolish learning and fear conditioning in both humans and animals. Propranolol has also demonstrated clinical value in preventing the progression of acute traumatic stress syndrome immediately posttrauma to full–blown PTSD. To confer predictive validity to our model, the centrally active –adrenergic antagonist, propranolol, and the non–centrally acting –adrenergic antagonist, nadolol, were administered to Wistar rats after passive avoidance fear conditioning training in the Gemini Avoidance System. Wistar rats were used because of their recognised enhanced sensitivity to stress. Evidence from this pilot study confirmed that propranolol 10 mg/kg significantly inhibits the consolidation of learned fear in rats, whereas nadolol is ineffective. This effectively validated our protocol and the apparatus for further application in this study and also confirmed the importance of a central mechanism of action for –adrenoceptor blockade in the possible application of these drugs in preventing the development of PTSD posttrauma. The second objective of this study was to investigate the role of 1–, 2–, 1–, and 2–receptors in a conditioned fear passive avoidance paradigm. This was done in order to investigate how selective pharmacological modulation of these receptors may modify the conditioned fear response, and whether any of these receptor systems might exert opposing effects in passive fear conditioning. Various centrally active noradrenergic agents were employed over a 3–tiered dose response design, including the 1–antagonist, prazosin, the 2–agonist, guanfacine, the 2–antagonist, yohimbine, the 1–antagonist, betaxolol and the 2–antagonist ICI 118551. The effect of post–exposure administration of these drugs on conditioned fear was compared to that of propranolol 10 mg/kg. Selected doses of betaxolol (10 mg/kg) and ICI 118551 (1 mg/kg) attenuated fear conditioning to an extent comparable to propranolol, as did prazosin (0.1 mg/kg). Yohimbine tended to boster fear learning at all doses tested, albeit not significantly, while guanfacine did not produce any significant effect on memory retention at any of the doses studied. This latter observation was surprising since yohimbine tended to bolster fear conditioning while earlier studies indicate that 2–agonism impairs conditioned fear. Concluding, this study has conferred validity to our passive avoidance model and has provided greater insight into the separate roles of noradrenergic receptors in contextual conditioned fear learning. The study has provided supportive evidence for a key role for both 1– and 2–antagonism, as well as 1–antagonism, in inhibiting fear memory consolidation and hence as viable secondary treatment options to prevent the development of PTSD posttrauma. However, further study is required to delineate the precise role of the 2–receptor in this regard. / Thesis (M.Sc. (Pharmacology))--North-West University, Potchefstroom Campus, 2012.
82

An investigation into the role of noradrenergic receptors in conditioned fear : relevance for posttraumatic stress disorder / Erasmus M.M.

Erasmus, Madeleine Monique January 2011 (has links)
Posttraumatic stress disorder is a debilitating anxiety disorder that can develop in the aftermath of a traumatic or life–threatening event involving extreme horror, intense fear or bodily harm. The disorder is typified by a symptom triad consisting of re–experiencing, hyperarousal and avoidance symptoms. Approximately 15–25% of trauma–exposed individuals go on to develop PTSD, depending on the nature and severity of the trauma. Although dysfunctional adaptive responses exist in multiple neurobiological pathways in the disorder, e.g. glutamate, GABA, glucocortocoids and serotonin, the noradrenergic system is particularly prominent and represents an important pharmacological target in attempts at preventing the development of PTSD posttrauma. However, current literature shows opposing and conflicting results regarding the effect of selective noradrenergic agents in memory processing, and the effect of modulation of selective noradrenergic receptors are spread over diverse protocols and paradigms of learning and fear also employing different strains of animals. Fear conditioning is a behavioural paradigm that uses associative learning to study the neural mechanisms underlying learning, memory and fear. It is useful in investigating the underpinnings of disorders associated with maladaptive fear responses. Performing fear conditioning experiments with the aim of applying it to an animal model of PTSD, and relating these behavioural responses to a defined neural mechanism, will assist both in the elucidation of the underlying pathology of the disease, as well as the development of more effective treatment. This project has set about to re–examine the diverse and complex role of noradrenergic receptors in the conditioned fear response with relevance to PTSD. To the best of my knowledge, this study represents the first attempt at studying a range of noradrenergic compounds with diverse actions and their ability to modify conditioned fear in a single animal model. This work thus introduces greater consistency and comparative relevance not currently available in the literature, and will also provide much needed pre–clinical evidence in support of treatment strategies targeting the noradrenergic system in the prevention of PTSD posttrauma. The first objective of this study was to set up and validate a passive avoidance fear conditioning protocol under our laboratory conditions using the Gemini Avoidance System. The noradrenergic system plays a prominent role in memory consolidation and fear conditioning, while administration of –adrenergic blockers, such as propranolol, have been shown to abolish learning and fear conditioning in both humans and animals. Propranolol has also demonstrated clinical value in preventing the progression of acute traumatic stress syndrome immediately posttrauma to full–blown PTSD. To confer predictive validity to our model, the centrally active –adrenergic antagonist, propranolol, and the non–centrally acting –adrenergic antagonist, nadolol, were administered to Wistar rats after passive avoidance fear conditioning training in the Gemini Avoidance System. Wistar rats were used because of their recognised enhanced sensitivity to stress. Evidence from this pilot study confirmed that propranolol 10 mg/kg significantly inhibits the consolidation of learned fear in rats, whereas nadolol is ineffective. This effectively validated our protocol and the apparatus for further application in this study and also confirmed the importance of a central mechanism of action for –adrenoceptor blockade in the possible application of these drugs in preventing the development of PTSD posttrauma. The second objective of this study was to investigate the role of 1–, 2–, 1–, and 2–receptors in a conditioned fear passive avoidance paradigm. This was done in order to investigate how selective pharmacological modulation of these receptors may modify the conditioned fear response, and whether any of these receptor systems might exert opposing effects in passive fear conditioning. Various centrally active noradrenergic agents were employed over a 3–tiered dose response design, including the 1–antagonist, prazosin, the 2–agonist, guanfacine, the 2–antagonist, yohimbine, the 1–antagonist, betaxolol and the 2–antagonist ICI 118551. The effect of post–exposure administration of these drugs on conditioned fear was compared to that of propranolol 10 mg/kg. Selected doses of betaxolol (10 mg/kg) and ICI 118551 (1 mg/kg) attenuated fear conditioning to an extent comparable to propranolol, as did prazosin (0.1 mg/kg). Yohimbine tended to boster fear learning at all doses tested, albeit not significantly, while guanfacine did not produce any significant effect on memory retention at any of the doses studied. This latter observation was surprising since yohimbine tended to bolster fear conditioning while earlier studies indicate that 2–agonism impairs conditioned fear. Concluding, this study has conferred validity to our passive avoidance model and has provided greater insight into the separate roles of noradrenergic receptors in contextual conditioned fear learning. The study has provided supportive evidence for a key role for both 1– and 2–antagonism, as well as 1–antagonism, in inhibiting fear memory consolidation and hence as viable secondary treatment options to prevent the development of PTSD posttrauma. However, further study is required to delineate the precise role of the 2–receptor in this regard. / Thesis (M.Sc. (Pharmacology))--North-West University, Potchefstroom Campus, 2012.
83

Efficacy and Safety of Intravenous and Oral Nadolol for Supraventricular Tachycardia in Children

Mehta, A V., Chidambaram, B 01 March 1992 (has links)
The efficacy and safety of oral nadolol in supraventricular tachycardia were evaluated prospectively in 27 children (median age 5.5 years). Fifteen patients had an unsuccessful trial of digoxin therapy. Intravenous nadolol was given to seven patients during electrophysiologic study; five of these had an excellent response and two had a partial response (25% decrease in tachycardia rate). Six of these patients had a similar response to oral nadolol. Twelve patients received both propranolol and nadolol. Among six patients, intravenous propranolol was successful in four and unsuccessful in two; all six had a similar response to oral nadolol. With oral propranolol, tachycardia was well controlled in four patients and persistent in two; five of five patients had a similar response to oral nadolol. Twenty-six patients were treated with oral nadolol; the arrhythmia was well controlled in 23, 2 had recurrent tachycardia and 1 patient had tachycardia at a 25% slower rate. The effective dose of nadolol ranged between 0.5 and 2.5 mg/kg body weight once daily (median dose 1 mg/kg per day). During follow-up (3 to 36 months), compliance and tolerance were excellent; excluding 2 patients with reactive airway disease who developed wheezing, only 3 (12%) of 24 had side effects necessitating a change in drug therapy. Once a day nadolol is a safe and effective agent in the management of supraventricular tachycardia in children. Its long-term efficacy can be predicted by the short-term response to intravenous nadolol or propranolol during programmed electrophysiologic study.
84

Advanced Raman, SERS, and ROA studies of biomedical and pharmaceutical compounds in solution

Levene, Clare January 2012 (has links)
The primary purpose of this study was to investigate the combination of experimental and computational methods in the search for reproducible colloidal surface-enhanced Raman scattering of pharmaceutical compounds. In the search for optimal experimental conditions for colloidal surface-enhance Raman scattering, the amphipathic β-blocker propranolol was used as the target molecule. Fractional factorial designs of experiments were performed and a multiobjective evolutionary algorithm was used to find acceptable solutions, from the results, that were Pareto ranked. The multiobjective evolutionary algorithm suggested solutions outside of the fractional factorial design and the experiments were then performed in the laboratory. The results observed from the suggested solutions agreed with the solutions that were found on the Pareto front. One of the experimental conditions observed on the Pareto front was then used to determine the practical limit of detection of propranolol. The experimental conditions that were chosen for the limit of detection took into account reproducibility and enhancement, the two most important parameters for analytical detection using surface-enhanced Raman scattering. The principal conclusion to this study was that the combination of computational and experimental methods can reduce the need for experiments by > 96% and then selecting solutions from the Pareto front improved limit of detection by a factor of 24.5 when it was compared to the previously reported limit of detection for propranolol. Using the same experimental conditions that were used for the limit of detection, these experiments were extended to plasma spiked with propranolol in order to test detection of this pharmaceutical in biofluids. Concentrations of propranolol were prepared using plasma as the solvent and measured for detection using colloidal surface-enhanced Raman scattering. Detection was determined as <130 ng/mL, within physiological concentrations, previously achieved using separation techniques. The second part of this thesis also involved a combination of experimental and computational methods. Raman optical activity was utilized to investigate secondary structure of amino acids and diamino acid peptides in combination with density functional theory calculations. Amino acids are important biological molecules that have vital functions in the biological system. They have been recognized as neurotransmitters and implicated in neurodegenerative diseases. Raman and Raman optical activity experimental results were compared to determine site-specific acetylation, marker bands for constitutional isomers and identification of functional groups that interact with the solvent. The experimental spectra were then compared to those from the density functional theory calculations. The results indicated that; constitutional isomers cannot be distinguished from the Raman spectra but can be distinguished from the Raman optical activity spectra, site-specific acetylation can be identified from the Raman spectra, however, Raman optical activity provides more structural information in relation to acetylation. When the results were compared to the density functional theory calculations for the diamino acid peptides the results agreed reasonably well, however, agreement was not as good for the monoamino acids because diamino acid peptides support fewer conformations due to the peptide bond whereas monoamino acids can adopt a far greater number of conformations. Combined computational and experimental techniques have developed the ability to detect and characterize biomedical compounds, a significant move in the advancement of Raman spectroscopies.
85

Development and improvement of methods for characterization of HPLC stationary phases

Undin, Torgny January 2011 (has links)
High Performance Liquid Chromatography (HPLC) is a widely used tech-nique both for detecting and purifying substances in academy and in the industry. In order to facilitate the use of, and knowledge in HPLC, character-ization of stationary phases is of utmost importance. Tailor made characteri-zation methods and workflows are steadily increasing the speed and accura-cy in which new separation systems and methods are developed. In the field fundamental separation science and of preparative chromatography there is always the need for faster and more accurate methods of adsorption isotherm determination. Some of that demand are met with the steadily increase of computational power, but the practical aspects on models and methods must also be further developed. These nonlinear characterization methods will not only give models capable of describing the adsorption isotherm but also actual values of local adsorption energies and monolayer saturation capacity of an individual interaction sites etc.The studies presented in this thesis use modern alkali stable stationary phas-es as a model phase, which will give an insight in hybrid materials and their separation mechanism. This thesis will include an update and expansion in using the Elution by Characteristic Points (ECP) method for determination of adsorption isotherms. The precision is even further increased due to the ability to use slope data as well as an increase in usability by assigning a set of guidance rules to be applied when determine adsorption isotherms having inflection points. This thesis will further provide the reader with information about stationary phase characterization and the power of using existing tech-niques; combine them with each other, and also what the expansion of meth-ods can revile in terms of precision and increased usability. A more holistic view of what benefits that comes with combining a non-linear characteriza-tion of a stationary phase with more common linear characterization meth-ods are presented.
86

A case for memory enhancement : ethical, social, legal, and policy implications for enhancing the memory

Muriithi, Paul Mutuanyingi January 2014 (has links)
The desire to enhance and make ourselves better is not a new one and it has continued to intrigue throughout the ages. Individuals have continued to seek ways to improve and enhance their well-being for example through nutrition, physical exercise, education and so on. Crucial to this improvement of their well-being is improving their ability to remember. Hence, people interested in improving their well-being, are often interested in memory as well. The rationale being that memory is crucial to our well-being. The desire to improve one’s memory then is almost certainly as old as the desire to improve one’s well-being. Traditionally, people have used different means in an attempt to enhance their memories: for example in learning through storytelling, studying, and apprenticeship. In remembering through practices like mnemonics, repetition, singing, and drumming. In retaining, storing and consolidating memories through nutrition and stimulants like coffee to help keep awake; and by external aids like notepads and computers. In forgetting through rituals and rites. Recent scientific advances in biotechnology, nanotechnology, molecular biology, neuroscience, and information technologies, present a wide variety of technologies to enhance many different aspects of human functioning. Thus, some commentators have identified human enhancement as central and one of the most fascinating subject in bioethics in the last two decades. Within, this period, most of the commentators have addressed the Ethical, Social, Legal and Policy (ESLP) issues in human enhancements as a whole as opposed to specific enhancements. However, this is problematic and recently various commentators have found this to be deficient and called for a contextualized case-by-case analysis to human enhancements for example genetic enhancement, moral enhancement, and in my case memory enhancement (ME). The rationale being that the reasons for accepting/rejecting a particular enhancement vary depending on the enhancement itself. Given this enormous variation, moral and legal generalizations about all enhancement processes and technologies are unwise and they should instead be evaluated individually. Taking this as a point of departure, this research will focus specifically on making a case for ME and in doing so assessing the ESLP implications arising from ME. My analysis will draw on the already existing literature for and against enhancement, especially in part two of this thesis; but it will be novel in providing a much more in-depth analysis of ME. From this perspective, I will contribute to the ME debate through two reviews that address the question how we enhance the memory, and through four original papers discussed in part three of this thesis, where I examine and evaluate critically specific ESLP issues that arise with the use of ME. In the conclusion, I will amalgamate all my contribution to the ME debate and suggest the future direction for the ME debate.

Page generated in 0.0279 seconds