41 |
INFLUENCE OF VOLTAGE SOURCE PULSE WIDTH MODULATED SWITCHING AND INDUCTION MOTOR CIRCUIT ON HARMONIC CURRENT CONTENTLange, Martin T. January 2008 (has links)
No description available.
|
42 |
Fuzzy Logic Control of a Switched-Inductor PWM DC-DC Buck Converter in CCMKolakowski, Terry 30 September 2009 (has links)
No description available.
|
43 |
Modeling, Analysis And Control Of Single-Phase And Three-Phase PWM RectifiersGhosh, Rajesh 05 1900 (has links)
Pulse width modulation (PWM) rectifiers are extensively used in battery charger, regulated dc voltage source, UPS systems, ac line conditioner and motor drives. The conventional control schemes for these rectifiers require PLL, transformations, and input voltage sensing, which increase the cost and complexity of the controller. Simple control schemes based on resistance emulation control are developed in this thesis work for different PWM boost rectifiers. Modeling, analysis and design methods for these rectifier systems are presented. The effect of computational delay involved in digital implementation on the performance of the above rectifier systems is studied.
A single-switch boost rectifier system is presented, which operates in DCM and in CCM for an output power less than and greater than 50% rated load, respectively, exploiting the best features of both the operating modes.
A generalized feedforward control is presented to improve the dynamic response of output voltage of single-phase boost rectifiers against input voltage, load current and reference voltage disturbances.
Feedforward control requires additional voltage and/or current measurements. A state observer is presented for estimating the inductor current of a buck rectifier, and two disturbance observers are presented to estimate the input voltage and the load current of a boost rectifier. These observers eliminate the need of additional sensors for implementing the feedforward control.
The resistance emulation control is extended to four-wire PWM rectifier. Two control methods are presented. The first method makes the input currents of the rectifier proportional to their respective input voltages, while the second one balances its input currents even under unbalanced input voltage condition. A detailed analysis of line and neutral current distortions of four-wire converter is presented. A three-carrier based PWM scheme is presented, which significantly reduces the neutral current of the rectifier compared to conventional PWM scheme, when three single-phase inductors are used, and considerably reduces both line and neutral current distortions, when a three-limb inductor is used.
A regenerative test setup containing two back-to-back connected three-phase PWM converters is presented for testing high-power converters in the active and reactive power circulation mode. The proposed scheme considerably reduces the cost of testing, and hence, the overall production cost of the converters compared to load-bank testing. A mathematical model is presented for the above system. A suitable control method is presented to control the two converters of the back-to-back system. A new PWM scheme is presented, which considerably reduces the requirement of the dc bus voltage of the back-to-back system compared to conventional PWM schemes.
All theoretical predictions are experimentally validated. The experimental results are presented.
|
44 |
Low Switching Frequency Pulse Width Modulation for Induction Motor DrivesTripathi, Avanish January 2017 (has links) (PDF)
Induction motor (IM) drives are employed in a wide range of industries due to low maintenance, improved efficiency and low emissions. Industrial installations of high-power IM drives rated up to 30 MW have been reported. The IM drives are also employed in ultra high-speed applications with shaft speeds as high as 500; 000 rpm. Certain applications of IM drives such as gas compressors demand high power at high speeds (e.g. 10 MW at 20; 000 rpm).
In high-power voltage source inverter (VSI) fed induction motor drives, the semiconductor devices experience high switching energy losses during switching transitions. Hence, the switching frequency is kept low in such high-power drives. In high-speed drives, the maximum modulation frequency is quite high. Hence, at high speeds and/or high power levels, the ratio of switching frequency to fundamental frequency (i.e. pulse number, P ) of the motor drive is quite low.
Induction motor drives, operating at low-pulse numbers, have significant low-order volt-age harmonics in the output. These low-order voltage harmonics are not filtered adequately by the motor inductance, leading to high total harmonic distortion (THD) in the line current as well as low-order harmonic torques. The low-order harmonic torques may lead to severe torsional vibrations which may eventually damage the motor shaft. This thesis addresses numerous issues related to low-pulse-number operation of VSI fed IM drives. In particular, optimal pulse width modulation (PWM) schemes for minimization of line current distortion and those for minimization of a set of low-order harmonic torques are proposed for two-level and three-level inverter fed IM drives.
Analytical evaluation of current ripple and torque ripple is well established for the induction motor drives operating at high pulse numbers. However, certain important assumptions made in this regard are not valid when the pulse number is low. An analytical method is proposed here for evaluation of current ripple and torque ripple in low-pulse-number induction motor drives. The current and torque harmonic spectra can also be predicted using the proposed method. The analytical predictions of the proposed method are validated through simulations and experimental results on a 3:7-kW induction motor drive, operated at low pulse numbers. The waveform symmetries, namely, half-wave symmetry (HWS), quarter-wave symmetry (QWS) and three-phase symmetry (TPS), are usually maintained in induction motor drives, operating at low switching frequencies. Lack of HWS is well known to introduce even harmonics in the line current. Impact of three-phase symmetry on line current and torque harmonic spectra is analyzed in this thesis. When the TPS is preserved, there are no triplen frequency components in the line current and also no harmonic torques other than those of order 6, 12, 18 etc. While TPS ensures that the triplen harmonics in the three-phase pole voltages are in phase, these triplen frequency harmonics form balanced sets of three-phase voltages when TPS is not preserved. Hence, triplen frequency currents flow through the stator windings. These result in torque harmonics of order 2, 4, 6, 8, 10 etc., and not just integral multiples of 6. These findings are well supported by simulation and experimental results.
One can see that two types of pole voltage waveforms are possible, when all waveform symmetries (i.e. HWS, TPS and QWS) are preserved in a two-level inverter, These are termed as type-A and type-B waveforms here. Also, QWS could be relaxed, while maintain-ing HWS and TPS, leading to yet another type of pole voltage waveform. Optimal switching angles to minimize line current THD are reported for all three types of pole voltage wave-forms. Theoretical and experimental results on a 3:7-kW IM drive show that optimal type-A PWM and optimal type-B PWM are better than each other in different ranges of modulation at any given low pulse number. In terms of current THD, the optimal PWM without QWS is found to be close to the better one between optimal type-A and optimal type-B at any modulation index for a given P . A combined optimal PWM to minimize THD is proposed, which utilizes the superior one between optimal type-A and optimal type-B at any given modulation index and pulse number. The performance of combined optimal PWM is shown to be better than those of synchronous sine-triangle (ST) PWM and selective harmonic elimination (SHE) PWM through simulations and experiments over a wide range of speed.
A frequency domain (FD) based and another synchronous reference frame (SRF) based optimal PWM techniques are proposed to minimize low-order harmonic torques. The objective here is to minimize the combined value of low-order harmonic torques of order 6, 12, 18, ..., 6(N 1), where N is the number of switching angles per quarter cycle. The FD based optimal PWM is independent of load and machine parameters while the SRF based method considers both load and machine parameters. The offline calculations are much simpler in
case of FD based optimal PWM than in case of SRF based optimal PWM. The performance
of the two schemes are comparable and are much superior to those of synchronous ST PWM
and SHE PWM in terms of low-order harmonic torques as shown by the simulation and
experimental results presented over a wide range of fundamental frequency,
The proposed optimal PWM methods for two level-inverter fed motor drives to minimize
the line current distortion and low-order torque harmonics, are extended to neutral point clamped (NPC) three-level inverter fed drive. The proposed optimal PWM methods for the NPC inverter are compared with ST PWM and SHE PWM, having the same number of
switching angles per quarter. Simulation and experimental results on a 3:7-kW induction
motor drive demonstrate the superior performance of proposed optimal PWM schemes over ST PWM and SHE PWM schemes.
The di_erent optimal PWM schemes proposed for two-level and three-level inverter fed
drives, having di_erent objective functions and constraints, are all analyzed from a space vector perspective. The three-phase PWM waveforms are seen as a sequence of voltage
vector applied in each case. The space vector analysis leads to determination of optimal
vector sequences, fast o_ine calculation of optimal switching angles and e_cient digital
implementation of the proposed optimal PWM schemes. A hybrid PWM scheme is proposed
for two-level inverter fed IM drive, having a maximum switching frequency of 250 Hz. The
proposed hybrid PWM utilizes ST PWM at a _xed frequency of 250 Hz at low speeds. This
method employs the optimal vector sequence to minimize the current THD at any speed in
the medium and high speed ranges. The proposed method is shown to reduce both THD as well as machine losses signi_cantly, over a wide range of speed, compared to ST PWM
Position sensorless vector control of IM drive also becomes challenging when the ratio
of inverter switching frequency to maximum modulation frequency is low. An improved
procedure to design current controllers, and a closed-loop ux estimator are reviewed. These are utilized to design and implement successfully a position sensorless vector controlled IM drive, modulated with asynchronous third harmonic injected (THI) PWM at a constant switching frequency of 500 Hz. Sensorless vector control is also implemented successfully, when the inverter is modulated with synchronized THI PWM and the maximum switching frequency is limited to 500 Hz.
|
45 |
Integrated CM Filter for Single-Phase and Three-Phase PWM RectifiersHedayati, Mohammad Hassan January 2015 (has links) (PDF)
The use of insulated-gate bipolar transistor (IGBT)-based power converters is increasing exponentially. This is due to high performance of these devices in terms of efficiency and switching speed. However, due to the switching action, high frequency electromagnetic interference (EMI) noises are generated. Design of a power converter with reduced EMI noise level is one of the primary objectives of this research.
The first part of the work focuses on designing common-mode (CM) filters, which can be integrated with differential-mode (DM) filters for three-phase pulse-width modulation (PWM) rectifier-based motor drives. This work explores the filter design based on the CM equivalent circuit of the drive system. Guidelines are provided for selection of the filter components. Different variants of the filter topology are evaluated to establish the effectiveness of the proposed topology. Analytical results based on Bode plot of the transfer functions are presented, which suggest effective EMI reduction. Experimental results based on EMI measurement on the grid side and CM current measurement on the motor side are presented. These results validate the effectiveness of the filter.
In the second part of the work, it is shown that inclusion of CM filters into DM filters results in resonance oscillations in the CM circuit. An active damping strategy is proposed to damp the oscillations in both line-to-line and line-to-ground ac voltages and currents. An approach based on pole placement by state feedback is used to actively damp both the DM and CM filter oscillations. Analytical expressions for state-feedback controller gains are derived for both continuous-and discrete-time models of the filter. Trade-off in selection of the active damping gain on the lower-order grid current harmonics is analysed using a weighted admittance function method.
In the third part of the work, single-phase grid-connected power converters are considered. An integrated CM filter with DM LCL filter is proposed. The work explores the suitability of PWM methods for single-phase and parallel single-phase grid-connected power converters. It is found that bipolar PWM and unipolar PWM with 180◦interleaving angle are suitable for single-phase and parallel single-phase power converters, respectively. The proposed configuration along with the PWM methods reduces the CM voltage, CM current, and EMI noise level effectively. It is also shown that the suggested circuit is insensitive to nonidealities of the power converter such as dead-time mismatch, mismatch in converter-side inductors, unequal turn on and turn off of the switches, and propagation delays.
In the fourth part of the work, the inter-phase inductor in parallel interleaved power converters is integrated with LCL filter boost inductor. Different variant designs are presented and compared with the proposed structure. It is shown that the proposed structure makes use of standard core geometries and consumes lesser core material as well as copper wire. Hence, it reduces the overall size and cost of the power converter.
In the present work, a 10kVA three-phase back-to-back connected with input LCL filter and output dv/dt filter, a 5kVA single-phase grid-connected power converter with LCL filter, and a 7.5kVA parallel single-phase grid-connected power converter with LCL filter are fabricated in the laboratory to evaluate and validate the proposed methods. The experimental results validate the proposed methods that result in significant EMI performance improvement of grid-connected power converters.
|
46 |
Metodologia e aplicativo de dimensionamento para um sistema de pulverização acoplável a pivô central - Notliada / Method and software to design a pivot attached spray system - NotliadaAbritta, Marcelo Aguiar 22 July 2011 (has links)
A aplicação de defensivos é um dos fatores de maior impacto em um sistema de produção agrícola, para o sucesso dessa prática o sistema de pulverização deve alocar o princípio ativo no alvo com eficiência e custo reduzido. Em uma área irrigada por pivô central o agricultor possui como alternativas para a aplicação de agroquímicos a pulverização tratorizada, aplicação aérea, quimigação e sistemas de pulverização acoplados ao equipamento de irrigação. Com o intuito de diminuir o custo fixo envolvido na implantação de um sistema de pulverização acoplado foi desenvolvida uma metodologia de dimensionamento, um aplicativo com as rotinas de cálculo e sugeridos novos modelos de emissor, que possuem válvulas anti gotas integradas, também estudados neste trabalho. São comparados quatro cenários para o dimensionamento: (a) barras de PVC intercambiáveis; (b) barras de PVC não intercambiáveis; (c) barras de PEMD intercambiáveis; e (d) barras de PEMD não intercambiáveis. As principais inovações do novo desenho do sistema são barras com a metade do comprimento de outros equipamentos acopláveis, de diâmetro telescópico, e o dimensionamento específico para cada torre. Os cenários com barras intercambiáveis obtiveram uniformidades estatísticas no limiar das faixas excelente e muito bom, mas apresentaram amplitudes entre a calda máxima e mínima aplicada da ordem de 60 L ha-1, favorecendo a adoção de sistemas com barras exclusivas. O aplicativo pode utilizar quaisquer modelos de emissor conhecidos pelo usuário exportando os resultados para um arquivo com valores separados por vírgula / Chemical application is a major factor into agricultural systems, to be succeeded in this practice the application system must allocate the active ingredient on target with efficiency and at low costs. In a center pivot irrigation area a farmer have some alternatives for chemical application as tractor mounted sprayers, aerial application, chemigation and pivot attached spray systems. Aiming lower deploying costs of a spray system coupled to the irrigation device, a design method and a software have been developed. New emitter models, which have built-in no leakage valves was also studied in this work. Four design scenarios have been studied: (a) interchangeable PVC spray boom; (b) unique PVC spray boom for each tower; (c) interchangeable MDPE spray boom (e) unique MDPE spray boom for each tower. The main innovations obtained by the new design were spray boom with half the length of the predecessors, telescopic diameter and specific design for each tower. Both the scenarios have reached excellent statistical uniformity, hence the interchangeable scenario had a range greater than 50 L ha-1 between maximum and minimum application rate. The software can design the spray booms for any emitter model known by the user
|
47 |
AnÃlise NumÃrica do Acoplador Duplo NÃo-Linear Baseado em Fibras de Cristais FotÃnicos (NLDC-PCF) Operando com PAM e PWM para ObtenÃÃo de Portas LÃgicas / Numerical Analysis of Nonlinear Dual Core Coupler Based on Photonic Crystal Fibers (PCF-NLDC) Operating with PAM and PWM for Obtaining Logic GatesMarcos Benedito Caldas Costa 01 January 2013 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Neste trabalho, apresentamos uma anÃlise numÃrica para a obtenÃÃo de portas lÃgicas totalmente Ãptica baseada em um acoplador direcional nÃo-linear simÃtrico (NLDC) em fibras de cristal fotÃnico (PCF). O projeto mais comumente usado para o NLDC-PCF à uma fibra holey, utilizada neste trabalho, em que a seÃÃo transversal à uma matriz periÃdica de buracos de ar que se prolonga por todo o comprimento da fibra, operando com dois pulsos de luz ultracurtos na forma de sÃlitons, de duraÃÃo mÃnima de 100fs (femtosegundos). Investigamos dois formatos de modulaÃÃo por pulsos, a modulaÃÃo por amplitude de pulso (PAM) na modalidade de chaveamento de mudanÃa de amplitude (ASK) e a modulaÃÃo por largura de pulso (PWM) para obter portas lÃgicas no NLDC-PCF duplo simÃtrico. Avaliamos o efeito resultante de um incremento no parÃmetro codificaÃÃo PAM (ε) e PWM (w), considerando a dispersÃo de segunda ordem (β2), a dispersÃo de terceira ordem (β3) e efeitos nÃo-lineares, tais como: SPM (Self Phase Modulation), SS (Self-Steepening) e IRS (lntrapulse Raman Scattering) em uma configuraÃÃo sem perdas. Os nossos resultados indicam que à possÃvel obter operaÃÃes lÃgicas utilizando um controle de fase entre os pulsos de entrada. / We present a numerical analysis for obtaining all-optical logic gates based on a nonlinear directional coupler symmetric (NLDC) based on photonic crystal fibers (PCF). The most commonly used to project the NLDC-PCF is a holey fiber, used here in cross section which is a periodic array of air holes extending through the length of the fiber, using two ultrashort light pulses in form of solitons, the minimum duration of 100fs (femtoseconds). We investigated two forms of modulation pulse, pulse amplitude modulation (PAM) in the form of amplitude shift keying (ASK) modulation and pulse width modulation (PWM) for logic gate NLDC-PCF symmetrical double. We evaluated the effect resulting from an increase in the offset parameter encoding PAM (ε) and PWM (w), considering the second order dispersion (β2), the third order dispersion (β3) and non-linear modulation effects SPM (Self Phase Modulation), SS (Self-Steepening) and IRS (lntrapulse Raman Scattering) in a configuration without loss. Our results indicate that logical operations can be obtained using a phase control between the input pulses.
|
48 |
Controlling a Brushless DC Motor in a Shift-by-Wire System / Styrning av en borstlös DC-motor i ett Shift-by-Wire-systemWiberg, Johan January 2003 (has links)
<p>Shift-by-Wire is about replacing the mechanical link between the automatic transmission and the shift lever with an electromechanical system. This will make new safety functions possible and assist the driver in other ways. </p><p>To do this, an actuator with a brushless DC motor is built into the transmission. It controls the position of the shift valve, which decides the driving position. </p><p>This thesis concerns the controlling of the brushless DC motor. This is done by programming a shift control unit with a Motorola HC12 microcontroller. The performance of the motor is then tested and evaluated.</p>
|
49 |
New leading/trailing edge modulation strategies for two-stage AC/DC PFC adapters to reduce DC-link capacitor ripple currentSun, Jing 17 September 2007 (has links)
AC/DC adapters mostly employ two-stage topology: Power Factor Correction (PFC) pre-regulation stage followed by an isolated DC/DC converter stage. Low power AC/DC adapters require a small size to be competitive. Among their components, the bulk DC-link capacitor is one of the largest because it should keep the output voltage with low ripple. Also, the size of this capacitor is penalized due to the universal line voltage application. Synchronization through employing leading edge modulation for the first PFC stage and trailing edge modulation for the second DC/DC converter stage can significantly reduce the ripple current and ripple voltage of the DC-link capacitor. Thus, a smaller DC-link capacitance can be used, lowering the cost and size of the AC/DC adapter. Benefits of the synchronous switching scheme were already demonstrated experimentally. However, no mathematical analysis was presented. In this thesis, detailed mathematical analyses in per-unit quantity are given to facilitate the calculation of the DC-link capacitor ripple current reduction with Leading/Trailing Edge Modulation strategies. One of the limitations of leading/trailing edge modulation is that the switching frequencies of the two stages need to be equal to achieve the best reduction of the DC-link capacitor ripple current. The DC-link capacitor ripple current will become larger if the switching frequency of the DC/DC converter is larger than that of the PFC pre-regulator, which blocks us to employ higher frequency for isolated DC/DC converter to reduce its transformer size. This thesis proposed a new Leading/Trailing Edge Modulation strategy to further reduce the DC-link bulk capacitor ripple current when switching frequency of DC/DC converter stage is twice the switching frequency of PFC stage. This proposed pulse width modulation scheme was verified by simulation. Experimental results obtained through digital control based on FPGA are also presented in this thesis.
|
50 |
Controlling a Brushless DC Motor in a Shift-by-Wire System / Styrning av en borstlös DC-motor i ett Shift-by-Wire-systemWiberg, Johan January 2003 (has links)
Shift-by-Wire is about replacing the mechanical link between the automatic transmission and the shift lever with an electromechanical system. This will make new safety functions possible and assist the driver in other ways. To do this, an actuator with a brushless DC motor is built into the transmission. It controls the position of the shift valve, which decides the driving position. This thesis concerns the controlling of the brushless DC motor. This is done by programming a shift control unit with a Motorola HC12 microcontroller. The performance of the motor is then tested and evaluated.
|
Page generated in 0.0323 seconds