• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 8
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Surface Engineering in Sheet Metal Forming

Carlsson, Per January 2005 (has links)
<p>In recent years, surface engineering techniques have been developed in order to improve the tribological performance in many industrial applications. In sheet metal forming processes, the usage of liquid lubricants can be decreased by using self lubricated tribo surfaces which will result in more environmentally friendly workshops. In the present work two different concepts, i.e. the deposition of thin organic coatings on the steel sheet and PVD coatings on the tool, have been evaluated. The sheet materials investigated include Zn and 55%Al-Zn metal coated steel sheet, which in general are difficult materials to form under dry conditions since they are sticky and thus have a high tendency to adhere to the tool surface. The PVD coatings include CrN, TiN and various DLC coatings. The work comprises tribo testing and post test characterisation using surface analytical techniques in order to evaluate the tribological properties of the tribo surfaces. The tribological tests of different tribo couples were conducted by using modified scratch testing and ball-on-disc testing. From these test results different friction and wear mechanisms have been identified. </p><p>The deposition of thin organic coatings on the steel sheet metal has been found to be promising in order to control the friction and to avoid metal-metal contact resulting in galling. However, it has been found that the tribological characteristics of organic coated steel sheet are strongly influenced by coating chemical composition, the substrate surface topography and the coating thickness distribution. </p><p>The performance of the PVD coatings depends mainly on the chemical composition and topography of the coated surface. By choosing PVD coatings such as diamond like carbon (DLC) low and stable friction coefficients can be obtained in sliding contact against Zn. Surface irregularities such as droplet-like asperities may cause an initial high friction coefficient. However, after a running in process or by polishing the PVD coating low friction coefficients can be obtained resulting in a stable sliding contact. </p><p>The combination of imaging (optical profilometry, LOM, SEM) and chemical analytical techniques (EDS, AES, ToF-SIMS) gave valuable information concerning the friction and wear properties of the tribo surfaces investigated.</p>
12

Surface Engineering in Sheet Metal Forming

Carlsson, Per January 2005 (has links)
In recent years, surface engineering techniques have been developed in order to improve the tribological performance in many industrial applications. In sheet metal forming processes, the usage of liquid lubricants can be decreased by using self lubricated tribo surfaces which will result in more environmentally friendly workshops. In the present work two different concepts, i.e. the deposition of thin organic coatings on the steel sheet and PVD coatings on the tool, have been evaluated. The sheet materials investigated include Zn and 55%Al-Zn metal coated steel sheet, which in general are difficult materials to form under dry conditions since they are sticky and thus have a high tendency to adhere to the tool surface. The PVD coatings include CrN, TiN and various DLC coatings. The work comprises tribo testing and post test characterisation using surface analytical techniques in order to evaluate the tribological properties of the tribo surfaces. The tribological tests of different tribo couples were conducted by using modified scratch testing and ball-on-disc testing. From these test results different friction and wear mechanisms have been identified. The deposition of thin organic coatings on the steel sheet metal has been found to be promising in order to control the friction and to avoid metal-metal contact resulting in galling. However, it has been found that the tribological characteristics of organic coated steel sheet are strongly influenced by coating chemical composition, the substrate surface topography and the coating thickness distribution. The performance of the PVD coatings depends mainly on the chemical composition and topography of the coated surface. By choosing PVD coatings such as diamond like carbon (DLC) low and stable friction coefficients can be obtained in sliding contact against Zn. Surface irregularities such as droplet-like asperities may cause an initial high friction coefficient. However, after a running in process or by polishing the PVD coating low friction coefficients can be obtained resulting in a stable sliding contact. The combination of imaging (optical profilometry, LOM, SEM) and chemical analytical techniques (EDS, AES, ToF-SIMS) gave valuable information concerning the friction and wear properties of the tribo surfaces investigated.
13

Mécanismes de dégradation de revêtements base CrN élaborés par arc-PVD : Intérêt d'une nano-architecture

Schmitt, Thomas 13 December 2010 (has links)
Les enjeux environnementaux liés à l'utilisation des fluides de coupe lors des étapes d'usinage, nécessitent le développementde nouveaux matériaux résistant à une utilisation en lubrification réduite, voire à sec. Le domaine des revêtements en couchesminces et plus particulièrement des dépôts physiques en phase vapeur (PVD) permet de synthétiser des surfaces adaptées à cetype d'utilisation sévère. Le nitrure de titane (TiN), largement utilisé dans l'industrie, montre toute l'efficacité de cesrevêtements. Ses performances sont cependant limitées à des températures modérées. Au contraire, le caractère réfractairemarqué du nitrure de chrome (CrN) en fait un candidat de choix pour des applications à hautes températures. Les propriétésmécaniques de ces nitrures sont certes moindres, mais le développement récent de microstructures nanométriques laisseaugurer des performances intéressantes que nous nous proposons d'étudier. L'objectif de ce travail est de déterminer l'influenced'une microstructure contrôlée à l'échelle nanométrique sur la durabilité de films minces base CrN, synthétisés par évaporationpar arc cathodique. Les différentes microstructures sont obtenues par modification chimique (addition d'aluminium et desilicium) ou par alternance des couches.L'ajout d'aluminium à CrN aboutit à la formation d'une solution solide et améliore les propriétés mécaniques du revêtement.La résistance à l'oxydation est augmentée par la présence de liaisons fortes Al-N, qui permettent de limiter le départ d'azote etainsi de retarder le phénomène d'oxydation. De plus, la démixtion de la phase initiale CrAlN en deux phases distinctes, CrN etAlN, tend à isoler les grains de CrN et ainsi à améliorer leur stabilité thermique. La même transformation est observée aprèsles essais de frottement et semble à l'origine des performances accrues du dépôt vis-à-vis de l'usure. L'addition de silicium setraduit par la synthèse d'un revêtement nanocomposite pour une teneur minimale d'environ 2 % at. Cette structure est forméede grains nanométriques enrobés dans une matrice amorphe. Le changement de structure s'accompagne d'une meilleurerésistance à l'oxydation, en raison des propriétés de barrière diffusionnelle de la matrice qui protège les nano-grains de CrN.En revanche, une fraction volumique trop importante de la phase amorphe apparaît préjudiciable au comportementtribologique. Le revêtement présente dans ce cas un comportement fragile, favorisant la formation et la propagation defissures. L'emploi de ces mêmes films (CrN et CrSiN) en architecture nanostratifiée inhibe néanmoins ce comportement. Desessais de micro-traction montrent que l'alternance des couches permet de limiter la formation de fissures, si bien quel'architecture multicouche semble prometteuse dans le cas de sollicitations sévères. De même, la stratification de CrN etCrAlN donne des revêtements extrêmement durables, malgré des propriétés mécaniques intermédiaires régies par une loi desmélanges.L’originalité de ce travail réside dans la détermination des mécanismes de dégradation des différentes microstructures, d’unepart en établissant le lien entre microstructure et propriétés d’usage, et d’autre part en considérant ces dégradation selon uneapproche in situ locale. / Environmental issues related to the use of metalworking fluids during machining steps require the development of newresistant materials operating in “Near Dry Machining” or in “Dry Machining” conditions. The field of thin coatings and moreparticularly Physical Vapor Deposition (PVD) enable the synthesis of resistant materials. Titanium nitride (TiN) is widely usedin industry and is an example of the efficiency of coatings. However, the poor oxidation resistance of this coating limits itsuse. On the contrary, chromium nitride (CrN) is an excellent candidate for applications at high temperatures despite its lowermechanical properties. The recent development of nanostructured coatings can overcome such inconvenience. The objectiveof this work is to study the influence of a controlled nanoscale microstructure on the durability of CrN thin films synthesizedby cathodic arc evaporation. The different microstructures are obtained by silicon or aluminum addition, or by alternatinglayers (multilayer structure).Adding aluminium to CrN leads to the formation of a solid solution and improves the mechanical properties of the coating.Resistance to oxidation is increased by the strong Al-N bonds, which limit nitrogen release, and thus delay the oxidation. Inaddition, the phase separation of CrAlN into CrN and AlN isolates the CrN grains from the surrounding atmosphere andincreases their thermal stability. The same phenomenon is detected after friction tests and seems to account for the improvedwear resistance. Silicon addition results in the formation of a nanocomposite coating for a minimum content of about 2 at.%.This structure is composed of nanometric grains embedded in an amorphous matrix. The structure change is followed by asignificant increase in the oxidation resistance, due to the diffusional barrier properties of the matrix, protecting thereby theCrN nano-grains. In contrast, a too large fraction of amorphous phase appears detrimental to the tribological behavior. Thecoating becomes brittle and is prone to cracks emergence. The use of these individual layers in a multilayer coating can avoidthis last consequence. Thanks to a micro-tensile machine, the alternating architecture was found to limit the cracks formation.Layered film seems thus to be very promising in the case of severe working conditions. Similarly, stratification between CrNand CrAlN allows the synthesis of highly sustainable coatings despite the mechanical properties governed by a law ofmixtures.The originality of this work lies in determining the degradation mechanisms of the different microstructures by establishingthe link between microstructure and wear properties on the one hand, and by in situ observation of damages on the other hand.
14

Aplikace PVD povlaků pro čelní frézování / Application of PVD coatings for face milling

Jaroš, Aleš January 2010 (has links)
Diploma thesis is focused on the application of PVD coatings for face milling. The theoretical part, systematically, deals with the division of coating methods. PVD method is stressed here. Treatment of material before coating is described as well. The machine, the machine tool and cutting material is described in the experimental section. The aim of the work was comparison of coating exchangeable cutting tips (VBD) to uncoated ones. Based on experiment, it is clear that the use of PVD coatings resulted in reduction of cutting powers and lifetime was increased.
15

Vliv PVD povlaku na trvanlivost VBD při čelním frézování / The influence of PVD coating on tool life of cutting inserts during face milling

Jašek, Petr January 2016 (has links)
This diploma thesis is aimed on durability of PVD and CVD coatings for symmetrical face milling. The theoretical part describes the characteristics of cemented carbides, milling technology and the characteristics of the coating methods. The experimental part describes the machine tool, used tools, workpiece material and cutting conditions. The aim of the work was to measure the cutting forces and tool wear during the milling. Based on experiment, it is clear that the PVD coatings with nano-layers achieves to the longer life in comparison with others and generally, that the using of coatings leads to reduction of cutting powers and lifetime was increased.
16

Vlastnosti povlaků řezných nástrojů ze slinutého karbidu / Coating properties of cutting tools carbide

Doležalová, Petra January 2013 (has links)
Diploma thesis is divided into two parts. The first part is focused on theoretical description of coating methods, on currently used coatings, their properties and it is also focused on description of methods, which are used for analyzing each property. The second part focuses on testing of coatings and analyzing of the values obtained from experiments. The aim of this thesis is then to compare the properties of the tested coatings.
17

Effect of temperature on early stage adhesion during TiAlN sliding against Inconel 718 and Stainless steel 316L : High temperature tribology

Ali, Ahsan January 2023 (has links)
High-performance materials such as stainless steels and nickel based super alloys are widely used in demanding applications where high mechanical and thermal properties are required. The applications of super alloys are mainly found in jet engines, power plants and gas turbines demanding high fatigue strength, corrosion and oxidation resistance as well as wear resistant properties. In order to use them, they go through various machining processes such as milling, turning, cutting, polishing etc. until the final product is achieved. Modern manufacturing industries employs various machining tools and technologies to improve the machining process of heat resistant super alloys. However, there are still challenges which needs to be addressed. Among them, adhesive wear of the machining tools is one of the main wear mechanism during the tribological interaction of tool and workpiece, preventing them to achieve the desired quality and surface finish of the end product. Moreover, it damages the tool reducing its lifecycle and in return, increasing the production cost. Among the cutting tools tungsten carbide (WC/Co) tools coated with TiAlN coating due to their good high temperature performance are extensively used. Nonetheless, these coatings still face issue like adhesive wear, abrasion, oxidation at higher temperature damaging the tools and subsequent machining. Therefore, it is imperative to understand the initiation mechanism of adhesive wear during the tribological interaction of super alloys and coated cutting tool material. In this research work, the tribological response of two coatings deposited by physical vapour deposition (PVD), having the composition Ti60Al40N and Ti40Al60N have been studied against two super alloys material, i.e. Inconel 718 and stainless steel 316L. A high temperature SRV (Schwingung (Oscillating), Reibung (Friction), Verschleiß (Wear)) reciprocation friction and wear test set up was employed to investigate the friction behaviour, wear rate and dominant wear mechanisms.  For Ti60Al40N coating, the experimental results revealed that generally, friction increases in case of sliding against Inconel 718 up to 400 °C and drops at 760 °C. A high wear volume at room temperature and a decrease to a minimum at 760 °C has been observed for Inconel 718. On the other side, Stainless steel 316L (SS 316L) faces a continuous rise in friction coefficient with highest value at 760 °C during sliding against Ti60Al40N coating. Wear is highest at 400 °C for SS 316L pin. The worn surfaces shows that both workpiece materials experience increase in material transfer due to adhesive wear with rise in temperature. At 400 °C, adhesion is the primary wear mechanism for both workpiece materials. A further rise in temperature to 760 °C promotes the adhesive wear through oxides formation on both material surfaces.  Similarly, Ti40Al60N coating shows the same friction behaviour with change in average steady state friction values for both material of Inconel 718 and SS 316L. Both workpiece materials responds in a similar way to wear volume loss, i.e. lowest at room temperature and highest at 760 °C. For Inconel 718, transfer of coating constituents on to the Inconel 718 pin surface was detected and associated with coating rupture and peeling, exacerbating with rise in temperature. Adhesion, abrasion, and oxidation are primary wear mechanisms at 400 °C and 760 °C. For SS 316L, coating transfer only happen at 400 °C. No damage of coating at 40 °C, a complete damage at 400 °C, and formation of dense porous oxides layers at 760 °C have been noticed. At 400 °C, adhesion, abrasion, and chipping while at 760 °C, adhesion, three body abrasion, ploughing and oxidation are the main wear mechanisms.

Page generated in 0.0919 seconds