• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cloning and characterisation of the plant pyruvate dehydrogenase complex components

McGow, Donna January 2002 (has links)
No description available.
2

Regulation of the pyruvate dehydrogenase complex

Naik, Sharon S. January 1995 (has links)
No description available.
3

E. Coli pyruvate dehydrogenase complex : studies on the mechanism of action and subunit composition of the complex/

CaJacob, Claire Ann, January 1984 (has links)
No description available.
4

Subunit structure and function of PDH complex from Escherichia coli /

Ikeda, Bryan Hiroshi January 1977 (has links)
No description available.
5

Genetic and biochemical analysis of zebrafish with visual function defects /

Taylor, Michael Robert. January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 74-81).
6

Regulation of pyruvate dehydrogenase kinase 4 by thyroid hormone role of peroxisome proliferator activated receptor gamma coactivator-1 Alpha and CCAAT enhancer binding protein /

Attia, Ramy Naguib, January 2009 (has links) (PDF)
Thesis (Ph.D.)--University of Tennessee Health Science Center, 2009. / Title from title page screen (viewed on July 22, 2009). Research advisor: Edwards A. Park. Document formatted into pages (xi, 94 p. : ill.). Vita. Abstract. Includes bibliographical references (p. 69-89).
7

Structural and biophysical characterization of human pyruvate dehydrogenase multi-enzyme complex

Prajapati, Sabin 29 November 2016 (has links)
No description available.
8

AAV3-Mediated Transfer and Expression of the Pyruvate Dehydrogenase E1 Alpha Subunit Gene Causes Metabolic Remodeling and Apoptosis of Human Liver Cancer Cells

Glushakova, Lyudmyla G., Lisankie, Matthew J., Eruslanov, Evgeniy B., Ojano-Dirain, Carolyn, Zolotukhin, Irene, Liu, Chen, Srivastava, Arun, Stacpoole, Peter W. 01 November 2009 (has links)
Most cancers rely disproportionately on glycolysis for energy even in the presence of adequate oxygen supply, a condition known as "aerobic glycolysis", or the Warburg effect. Pharmacological reversal of the Warburg effect has been shown to cause selective apoptosis of tumor cells, presumably by stimulating mitochondrial respiratory chain activity and production of reactive oxygen species that, in turn, induce a caspase-mediated series of reactions leading to cell death. We reasoned that a similar effect on tumor cells might result from up-regulation of the E1α subunit gene (pda1) of the pyruvate dehydrogenase complex (PDC) that catalyzes the rate-limiting step in aerobic glucose oxidation and thus plays a major role in the control of oxidative phosphorylation. To test this postulate, we employed a self-complementary adeno-associated virus (scAAV)-based delivery and expression system for targeting pda1 to the mitochondria of primary cultures of human hepatoblastoma (HB) and hepatocellular carcinoma (HCC) cells. Serotypes 1-10 scAAV vectors that included enhanced green fluorescent (egfp) reporter gene driven by either cytomegalovirus (CMV) or chicken beta-actin (CBA) promoters were analyzed for transduction ability of HB (Huh-6) and HCC (Huh-7 and HepG2) cell lines and primary cultures of normal human hepatocytes. Serotype 3 scAAV-egfp (scAAV3-egfp) vector was the most efficient and transduced up to 90% of cells. We limited the transgene expression primarily to liver cancer cells by generating scAAV3 vectors that contained the human alpha-fetoprotein promoter (AFP)-driven reporter gene (scAAV3.AFP-egfp) and the potentially therapeutic gene scAAV3.AFP-pda1. Infection of Huh-6 cells by the scAAV3.AFP-pda1 vector increased protein expression of E1α, PDC catalytic activity, and late-stage apoptotic cell death. Apoptosis was also associated with increased protein expression of Bcl-X/S, an early marker of apoptosis, and release of cytochrome c into the cytosol of infected HB cells. These data indicate that molecular targeting of mitochondrial oxidative metabolism in liver cancer cells by AAV3-mediated delivery of pda1 holds promise as a novel and effective therapeutic approach for human hepatic tumors.
9

Hepatic HAX-1 Deficiency Prevents Metabolic Diseases in Mice

Alogaili, Fawzi 27 September 2020 (has links)
No description available.
10

The role of pyruvate dehydrogenase kinase in glucose and ketone body metabolism

Rahimi, Yasmeen 03 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The expression of pyruvate dehydrogenase kinase (PDK) 2 and 4 are increased in the fasted state to inactivate the pyruvate dehydrogenase complex (PDC) by phosphorylation to conserve substrates for glucose production. To assess the importance of PDK2 and PDK4 in regulation of the PDC to maintain glucose homeostasis, PDK2 knockout (KO), PDK4 KO, and PDK2/PDK4 double knockout (DKO) mice were generated. PDK2 deficiency caused higher PDC activity and lower blood glucose levels in the fed state while PDK4 deficiency caused similar effects in the fasting state. DKO intensified these effects in both states. PDK2 deficiency had no effect on glucose tolerance, PDK4 deficiency produced a modest effect, but DKO caused a marked improvement, lowered insulin levels, and increased insulin sensitivity. However, the DKO mice were more sensitive than wild-type mice to long term fasting, succumbing to hypoglycemia, ketoacidosis, and hypothermia. Stable isotope flux analysis indicated that hypoglycemia was due to a reduced rate of gluconeogenesis. We hypothesized that hyperglycemia would be prevented in DKO mice fed a high saturated fat diet for 30 weeks. As expected, DKO mice fed a high fat diet had improved glucose tolerance, decreased adiposity, and were euglycemic due to reduction in the rate of gluconeogenesis. Like chow fed DKO mice, high fat fed DKO mice were unusually sensitive to fasting because of ketoacidosis and hypothermia. PDK deficiency resulted in greater PDC activity which limited the availability of pyruvate for oxaloacetate synthesis. Low oxaloacetate resulted in overproduction of ketone bodies by the liver and inhibition of ketone body and fatty acid oxidation by peripheral tissues, culminating in ketoacidosis and hypothermia. Furthermore, when fed a ketogenic diet consisting of low carbohydrate and high fat, DKO mice also exhibited hypothermia, ketoacidosis, and hypoglycemia. The findings establish that PDK2 is more important in the fed state, PDK4 is more important in the fasted state, survival during long term fasting depends upon regulation of the PDC by both PDK2 and PDK4, and that the PDKs are important for the regulation of glucose and ketone body metabolism.

Page generated in 0.0377 seconds