• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 15
  • 13
  • 2
  • 1
  • 1
  • Tagged with
  • 51
  • 25
  • 16
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aproximantes de Padé, aproximantes de Chebyshev-Padé e aproximantes de Fourier-Padé : Localização de singularidades/Polos espaciais em EDP's

Sá, Vera Lisa Mateus January 2004 (has links)
Tese de mestrado. Faculdade de Engenharia. Universidade do Porto. 1998
2

De Montessus de Ballore theorem for Pade approximation.

Chou, Pʻing January 1994 (has links)
A research report submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in partial fulfilment of the degree of Master of Science / The importance of Pade approximation has been increasingly recognized in ' recent years. The first convergence result of Pade approximants valid for general meromorphic functions was obtained by de Montessus de Ballore in 1902. He proved that when a function f has precisely n poles in I z 1< R, then the (n+ 1)th column in thePade table of f converges to f in I z J< R. (Abbreviation abstract) / Andrew Chakane 2019
3

Percolação direcionada em redes regulares bidimensionais. / Directed percolation on two-dimensional regular lattices.

Neves, Ubiraci Pereira da Costa 24 April 1992 (has links)
Utilizando uma técnica de matriz de transferência, expandimos em série a probabilidade de percolação P(q) para o problema da percolação por sítio na rede quadrada direcionada. Nosso método revela uma inesperada conexão entre este problema e o da enumeração dos modos de se dissecar uma bola. Mostramos que o método pode também ser usado para se expandir em série o tamanho médio do cluster S (p) . Uma análise baseada nos aproximantes de Padé fornece estimativas do valor crítico pc, e também do expoente crítico &#946. / Using a transfer matrix technique we obtain an extended series expansion of the percolation probability P(q) for the directed site percolation problem on the square lattice. Our method reveals an up to now unsuspected connection between this problem and the enumeration of the ways of dissecting a ball. We show that the method can also be used to determine a series expansion for the mean cluster size S(p). An analysis based on Padé approximants gives estimates of the critical threshold pc, and also of the critical exponent &#946.
4

Percolação direcionada em redes regulares bidimensionais. / Directed percolation on two-dimensional regular lattices.

Ubiraci Pereira da Costa Neves 24 April 1992 (has links)
Utilizando uma técnica de matriz de transferência, expandimos em série a probabilidade de percolação P(q) para o problema da percolação por sítio na rede quadrada direcionada. Nosso método revela uma inesperada conexão entre este problema e o da enumeração dos modos de se dissecar uma bola. Mostramos que o método pode também ser usado para se expandir em série o tamanho médio do cluster S (p) . Uma análise baseada nos aproximantes de Padé fornece estimativas do valor crítico pc, e também do expoente crítico &#946. / Using a transfer matrix technique we obtain an extended series expansion of the percolation probability P(q) for the directed site percolation problem on the square lattice. Our method reveals an up to now unsuspected connection between this problem and the enumeration of the ways of dissecting a ball. We show that the method can also be used to determine a series expansion for the mean cluster size S(p). An analysis based on Padé approximants gives estimates of the critical threshold pc, and also of the critical exponent &#946.
5

Migração por extrapolação de ondas em três dimensões / Migration by wave extrapolation in three dimensions

Mondini, Débora 18 August 2018 (has links)
Orientador: Maria Amélia Novais Schleicher / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica e Instituto de Geociências / Made available in DSpace on 2018-08-18T17:07:35Z (GMT). No. of bitstreams: 1 Mondini_Debora_M.pdf: 2991739 bytes, checksum: 04c2af83e74d4f531ac6c278f2a0f1dc (MD5) Previous issue date: 2011 / Resumo: Em três dimensões, os métodos de migração baseados na resolução da equação da onda unidirecional, além de enfrentar problemas para imagear refletores com fortes mergulhos e tratar ondas evanescentes, ainda são computacionalmente caros. Para os problemas de imagear refletores com forte mergulho e ondas evanescentes, nessa dissertação, usamos a aproximação em série de Padé complexa. Pelo fato da resolução do problema tridimensional ser computacionalmente cara, ao longo dos anos várias técnicas foram elaboradas com o objetivo de reduzir os custos e ainda manter a qualidade do método de migração que se estiver usando. Uma técnica comumente utilizada é o splitting. Nosso objetivo com esse trabalho é testar os operadores de migração usando a aproximação em série de Padé complexa, a técnica de splitting em duas ou quatro direções alternadas, bem como o termo de correção de Li. Para o caso de splitting em apenas duas direções, enfrentamos o problema de anisotropia numérica, ou seja, o operador de migração age de forma diferente em direções diferentes, resultando em grandes erros de posicionamento. Para corrigir esse problema usamos a correção de Li. Sem alterar a migração FD 2D, a correção de Li é uma extrapolação do campo residual por um deslocamento de fase. Quando o splitting é aplicado em quatro direções (nas coordenadas horizontais e nas diagonais) de forma alternada ainda podemos enfrentar problemas de anisotropia numérica e consequentemente mau posicionamento dos refletores muito inclinados. Por isso, testamos a aplicação da correção de Li para este caso. Nessa dissertação, comparamos os resultados obtidos pela técnica de migração FD, os testes foram realizados em um meio homogêneo e nos dados sintéticos 3D SEG-EAGE / Abstract: In three dimensions, migration methods based on solving the one-way wave equation, besides facing problems to handle evanescent waves and to image steep dip reflectors, are still computationally expensive. For the problems of imaging steep dip reflectors and treat evanescent waves, in this dissertation, we use the complex Padé approximation. Because solving three dimensional problems is computationally expensive, several techniques have been developed in order to reduce costs and still maintain the quality of the migration method. A commonly used technique is splitting. Our goal with this study is to test the migration operators using the complex Padé approximation, the technique of splitting into two or four alternating directions, as well as the Li correction term. For the case of splitting in two directions only, we face the problem of numerical anisotropy, i.e., the migration operator acts differently in different directions, resulting in a mispositioning of the reflectors in the situation where the strike direction of the reflector is far off the migration planes. To correct for this problem we use the Li correction. Without changing 2D FD migration, Li correction is an extrapolation of the residual wave field by a phase shift. When splitting is applied in four directions (the horizontal coordinates and the diagonals) alternately we can still face problems of numerical anisotropy and consequently mispositioning of steep dip reflectors. Because of that, we also tested the application of the Li correction. In this dissertation, we compare the results obtained by the FD migration technique. The tests were conducted in a homogeneous media and synthetic 3D data in SEG-EAGE / Mestrado / Reservatórios e Gestão / Mestre em Ciências e Engenharia de Petróleo
6

Approximating stable densities with Padé approximants and asymptotic series

Liang, Jiaxi January 2011 (has links)
In this thesis, we are interested in using the Padé approximants and asymptotic series to approximate the density functions of the stable distributions. The paper specifically discusses the selection of the optimal degree and central point of Padé approximants as well as how to connect the Padé approximants and asymptotic series as a piecewise function. Based on such approximation, a computational algorithm is developed to estimate the maximum likelihood estimator with confidence interval of the parameters, using quasi-Newton method. Simulations are conducted to evaluate the performance of this algorithm, and comparisons are made to Nolan's integral method to show that the method introduced in the thesis is fast and reliable in approximation and estimation.
7

Approximating stable densities with Padé approximants and asymptotic series

Liang, Jiaxi January 2011 (has links)
In this thesis, we are interested in using the Padé approximants and asymptotic series to approximate the density functions of the stable distributions. The paper specifically discusses the selection of the optimal degree and central point of Padé approximants as well as how to connect the Padé approximants and asymptotic series as a piecewise function. Based on such approximation, a computational algorithm is developed to estimate the maximum likelihood estimator with confidence interval of the parameters, using quasi-Newton method. Simulations are conducted to evaluate the performance of this algorithm, and comparisons are made to Nolan's integral method to show that the method introduced in the thesis is fast and reliable in approximation and estimation.
8

On effective irrationality measures for some values of certain hypergeometric functions

Heimonen, A. (Ari) 20 March 1997 (has links)
Abstract The dissertation consists of three articles in which irrationality measures for some values of certain special cases of the Gauss hypergeometric function are considered in both archimedean and non-archimedean metrics. The first presents a general result and a divisibility criterion for certain products of binomial coefficients upon which the sharpenings of the general result in special cases rely. The paper also provides an improvement concerning th e values of the logarithmic function. The second paper includes two other special cases, the first of which gives irrationality measures for some values of the arctan function, for example, and the second concerns values of the binomial function. All the results of the first two papers are effective, but no computation of the constants for explicit presentation is carried out. This task is fulfilled in the third article for logarithmic and binomial cases. The results of the latter case are applied to some Diophantine equations.
9

Orthogonal Polynomials on S-Curves Associated with Genus One Surfaces

Barhoumi, Ahmad 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We consider orthogonal polynomials P_n satisfying orthogonality relations where the measure of orthogonality is, in general, a complex-valued Borel measure supported on subsets of the complex plane. In our consideration we will focus on measures of the form d\mu(z) = \rho(z) dz where the function \rho may depend on other auxiliary parameters. Much of the asymptotic analysis is done via the Riemann-Hilbert problem and the Deift-Zhou nonlinear steepest descent method, and relies heavily on notions from logarithmic potential theory.
10

VPAStab: stabilised vector-Padé approximation with application to linear systems.

Graves-Morris, Peter R. January 2003 (has links)
No / An algorithm called VPAStab is given for the acceleration of convergence of a sequence of vectors. It combines a method of vector-Padé approximation with a successful technique for stabilisation. More generally, this algorithm is designed to find the fixed point of the generating function of the given sequence of vectors, analogously to the way in which ordinary Padé approximants can accelerate the convergence of a given scalar sequence. VPAStab is justified in the context of its application to the solution of a large sparse system of linear equations. The possible breakdowns of the algorithm are listed. Numerical experiments indicate that these breakdowns can be classified either as pivot-type (type L) or as ghost-type (type D).

Page generated in 0.0375 seconds