Spelling suggestions: "subject:"padé"" "subject:"adé""
11 |
Contribution à l'approximation de fonctions de la variable complexe au sens Hermite-Padé et de HardyDella Dora, Jean 20 June 1980 (has links) (PDF)
.
|
12 |
Multipoint Padé approximants used for piecewise rational interpolation and for interpolation to functions of Stieltjes' typeGelfgren, Jan January 1978 (has links)
A multipoint Padë approximant, R, to a function of Stieltjes1 type is determined.The function R has numerator of degree n-l and denominator of degree n.The 2n interpolation points must belong to the region where f is analytic,and if one non-real point is amongst the interpolation points its complex-conjugated point must too.The problem is to characterize R and to find some convergence results as n tends to infinity. A certain kind of continued fraction expansion of f is used.From a characterization theorem it is shown that in each step of that expansion a new function, g, is produced; a function of the same type as f. The function g is then used,in the second step of the expansion,to show that yet a new function of the same type as f is produced. After a finite number of steps the expansion is truncated,and the last created function is replaced by the zero function.It is then shown,that in each step upwards in the expansion a rational function is created; a function of the same type as f.From this it is clear that the multipoint Padê approximant R is of the same type as f.From this it is obvious that the zeros of R interlace the poles, which belong to the region where f is not analytical.Both the zeros and the poles are simple. Since both f and R are functions of Stieltjes ' type the theory of Hardy spaces can be applied (p less than one ) to show some error formulas.When all the interpolation points coincide ( ordinary Padé approximation) the expected error formula is attained. From the error formula above it is easy to show uniform convergence in compact sets of the region where f is analytical,at least wien the interpolation points belong to a compact set of that region.Convergence is also shown for the case where the interpolation points approach the interval where f is not analytical,as long as the speed qî approach is not too great. / digitalisering@umu
|
13 |
BiCGStab, VPAStab and an adaptation to mildly nonlinear systems.Graves-Morris, Peter R. January 2007 (has links)
No / The key equations of BiCGStab are summarised to show its connections with Pade and vector-Pade approximation. These considerations lead naturally to stabilised vector-Pade approximation of a vector-valued function (VPAStab), and an algorithm for the acceleration of convergence of a linearly generated sequence of vectors. A generalisation of this algorithm for the acceleration of convergence of a nonlinearly generated system is proposed here, and comparative numerical results are given.
|
14 |
Uso de aproximantes de Padé na estimação de parâmetros modais em estruturas de grande porte. / Use of Padé approximants for modal parameters estimation on large scale structures.Luiz Antonio Barbosa Coelho 18 December 2008 (has links)
Este trabalho apresenta um novo algoritmo para a estimação de frequências e amortecimentos de vibrações, baseado em aproximantes de Padé, a partir da análise de sinais temporais oriundos de estruturas de grande porte. O algoritmo se baseia nas propriedades de convergência dos aproximantes de Padé, que garantem a existência de pólos que representam corretamente as componentes senoidais do sinal, e numa peculiar distribuição de pólos e zeros espúrios que decorrem da sobre-determinação do aproximante. O comportamento estatístico do algoritmo é estudado através de experimentos numéricos e sua aplicação em um caso real é feita. / This work introduces a novel estimation technique for vibration frequency and damping estimation, based on Padé approximants, and using time series taken from large structures. The algorithm is based on convergence properties of Padé approximants that assures the existence of real poles representing the sinusoidal components of the signal, and a remarkable distribution of stray poles and zeros, resulting from the approximant overdetermination. Its statistical behavior is analyzed through numerical experiments and an application for a real structure is provided as example.
|
15 |
Uso de aproximantes de Padé na estimação de parâmetros modais em estruturas de grande porte. / Use of Padé approximants for modal parameters estimation on large scale structures.Coelho, Luiz Antonio Barbosa 18 December 2008 (has links)
Este trabalho apresenta um novo algoritmo para a estimação de frequências e amortecimentos de vibrações, baseado em aproximantes de Padé, a partir da análise de sinais temporais oriundos de estruturas de grande porte. O algoritmo se baseia nas propriedades de convergência dos aproximantes de Padé, que garantem a existência de pólos que representam corretamente as componentes senoidais do sinal, e numa peculiar distribuição de pólos e zeros espúrios que decorrem da sobre-determinação do aproximante. O comportamento estatístico do algoritmo é estudado através de experimentos numéricos e sua aplicação em um caso real é feita. / This work introduces a novel estimation technique for vibration frequency and damping estimation, based on Padé approximants, and using time series taken from large structures. The algorithm is based on convergence properties of Padé approximants that assures the existence of real poles representing the sinusoidal components of the signal, and a remarkable distribution of stray poles and zeros, resulting from the approximant overdetermination. Its statistical behavior is analyzed through numerical experiments and an application for a real structure is provided as example.
|
16 |
Convergence et applications d'approximations rationnelles vectoriellesLe Ferrand, Hervé 29 May 1992 (has links) (PDF)
Les approximants de Padé et leurs généralisations sont depuis plusieurs années l'objet d'intenses recherches, et leurs applications sont nombreuses. Beaucoup de problèmes théoriques restent cependant en suspens: problèmes tout d'abord d'existence, d'unicité problèmes de convergence, d'accélération de convergence. L'objectif du travail présenté ici était justement d'apporter des réponses à de telles questions. Dans la première partie nous nous sommes intéressés aux approximants de Padé vectoriels de séries de matrices. Des conditions d'existence et d'unicité, des résultats de convergence sont donnés, ainsi que le lien avec la théorie de Lanczos pour la résolution de systèmes linéaires. Nous utilisons aussi les approximants de Padé vectoriels pour l'approximation simultanée d'une fonction et de sa dérivée. Dans la seconde partie une condition suffisante pour la convergence quadratique de l'epsilon algorithme topologique pour la résolution de systèmes non linéaires est donnée. Des résultats d'accélération de la convergence sont démontrés pour la deuxième colonne de l'epsilon algorithme/vectoriel et plus généralement pour des procédés quasi linéaires vectoriels. La troisième partie porte sur certains approximants de type Padé de fonctions entières. Des résultats sur l'accélération sont établis. La dernière partie fait le lien entre biorthogonalité, procédé de Gram-Schmidt, système linéaire et interpolation.
|
17 |
Aplicação da termodinâmica dos meios homogêneos ao estudo de estados metaestáveis e instáveis / Thermodynamics of homogeneous media : an application to the study of metastable and unstable statesGuerrero, André de Oliveira 08 February 2010 (has links)
Orientador: Adalberto Bono Maurizio Sacci Bassi / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-17T03:59:51Z (GMT). No. of bitstreams: 1
Guerrero_AndredeOliveira_M.pdf: 4353295 bytes, checksum: a8e573ea1fa805457349a7a1d9c37925 (MD5)
Previous issue date: 2010 / Resumo: A equação original de van der Waals é alterada de modo a aprimorar sua aderência a dados experimentais para o Argônio, desde as baixas densidades dos estados gasosos até as altas densidades dos líquidos e dos vidros. Isto permite a obtenção de uma curva spinodal (fronteira termodinâmica entre os estados não acessíveis pela matéria e os estados possíveis, estáveis ou não) mais precisa do que a atualmente disponível, além de fornecer subsídios para estudos de líquidos e gases não estáveis. A pressão repulsiva original é substituída pela pressão de um sistema de esferas rígidas, enquanto que a pressão atrativa original é substituída pela pressão de um campo médio isotrópico descrito por três parâmetros. A realização destas alterações propicia a discussão de diversos aspectos da interpretação física da equação de van der Waals. Como os estados considerados são homogêneos, mas não necessariamente estados de equilíbrio, a temporal termodinâmica dos meios homogêneos é uma teoria adequada à descrição dos estados representados pela equação alterada. / Abstract: The original van der Waals equation is altered to improve its quantitative description of argon experimental values, including those of low density gaseous states and high density liquids and glasses. A spinodal curve is obtained (the limit between thermodynamically forbidden and permitted states of matter, either stable or unstable) that is more precise than the one actually available and reveals more information for studying unstable gases and liquids. The pressure of a rigid spheres system substitutes the original repulsive pressure, while the pressure of an isotropic mean field defined by three parameters substitutes the original attractive pressure. Implementing these substitutions provokes the discussion of several aspects, related to the physical meaning of van der Waals equation. Since only homogeneous states are considered, although they are not necessarily equilibrium states, time dependent thermodynamics of homogeneous media is an adequate theory to describe the states represented by the altered equation. / Mestrado / Físico-Química / Mestre em Química
|
18 |
Método da propagação de feixe de ângulo largo para análise de guias de ondas ópticos não-lineares / not availableFlamino, Reinaldo de Sales 21 September 2001 (has links)
Este trabalho propõe uma extensão do método de propagação de feixe (BPM - Beam Propagation Method) para a análise de guias de ondas ópticos e acopladores baseados em materiais não-lineares do tipo Kerr. Este método se destina à investigação de estruturas onde a utilização da equação escalar de Helmholtz (EEH) em seu limite paraxial não mais se aplica. Os métodos desenvolvidos para este fim são denominados na literatura como métodos de propagação de feixe de ângulo largo. O formalismo aqui desenvolvido é baseado na técnica das diferenças finitas e nos esquemas de Crank-Nicholson (CN) e Douglas generalizado (GD). Estes esquemas apresentam como característica o fato de apresentarem um erro de truncamento em relação ao passo de discretização transversal, Δx, proporcional a O(Δx2) para o primeiro e O(Δx4). A convergência do método em ambos esquemas é otimizada pela utilização de um algoritmo interativo para a correção do campo no meio não-linear. O formalismo de ângulo largo é obtido pela expansão da EEH para os esquemas CN e GD em termos de polinômios aproximantes de Padé de ordem (1,0) e (1,1) para CN e GD, e (2,2) e (3,3) para CN. Os aproximantes de ordem superior a (1,1) apresentam sérios problemas de estabilidade. Este problema é eliminado pela rotação dos aproximantes no plano complexo. Duas condições de contorno nos extremos da janela computacional são também investigadas: 1) (TBC - Transparent Boundary Condition) e 2) condição de contorno absorvente (TAB - Transparent Absorbing Boundary). Estas condições de contorno possuem a facilidade de evitar que reflexões indesejáveis sejam transmitidas para dentro da janela computacional. Um estudo comparativo da influência destas condições de contorno na solução de guias de ondas ópticos não-lineares é também abordada neste trabalho. / This work introduces an extension of the beam propagation method (BPM) for the analysis of optical waveguides and couplers based on Kerr-type nonlinear materials. This method is intended for the investigation of structures where the paraxial scalar Helmholtz equation (EEH) no longer holds. The numerical methods developed for this situation are known in the literature as wide-angle beam propagation methods. The formulation developed in this work is based on finite differences and on the Crank-Nicholson (CN) and Generalized Douglas (GD) schemes. These schemes are characterized by a truncation error with respect to the transverse discretization step, Δx, proporcional to O(Δx2) for the CN and to O(Δx4) for the GD scheme. The convergence of the method for both schemes is optimized by the application of an iterative algorithm for the correction of the field in the nonlinear medium. The wide-angle formalism is obtained by the expansion of the EEH for the CN and GD schemes in terms of Padé approximant polynomials. The expansions addressed in this work utilize Padé approximants of order (1,0) and (1,1) for the CN and GD scheme, and (2,2) and (3,3) for the CN scheme. Approximants orders higher than (1,1) show serious stability problems. This problem is circumvented by rotating the approximants in the complex plane. Two boundary conditions on the edge of the computational window are also investigated: 1) transparent boundary condition (TBC) and 2) transparent absorbing boundary (TAB). These boundary conditions are necessary in order to avoid unwanted reflections back to computational domain. A comparative study of the influence of these boundary conditions on the solution of nonlinear optical waveguides is also addressed in this work.
|
19 |
Application des approximants de Padé au calcul de l'exponentielle d'une matriceRoche, Jean-Rodolpe 20 June 1980 (has links) (PDF)
Fonction matricielle. Exponentielle d'une matrice. Approximants de Padé de l'exponentielle d'une matrice. Usage pratique de la methode de Padé pour le calcul de l'exponentielle d'une matrice. Méthode pour calculer l'exponentielle d'une matrice qui utilise un algorithme de bloc diagonalisation. Développement en série de polynômes de Tchebychev. Méthode pour calculer le nombre de chiffres significatifs exacts obtenus par un algorithme qui calcule l'exponentielle d'une matrice.
|
20 |
Étude et développement de méthodes numériques d’ordre élevé pour la résolution des équations différentielles ordinaires (EDO) : Applications à la résolution des équations d'ondes acoustiques et électromagnétiques / On the study and development of high-order time integration schemes for ODEs applied to acoustic and electromagnetic wave propagation problemsN'Diaye, Mamadou 08 December 2017 (has links)
Dans cette thèse, nous étudions et développons différentes familles de schémas d’intégration en temps pour les EDO linéaires. Dans la première partie, après avoir introduit les définitions et propriétés utilisées pour construire les schémas en temps, nous présentons deux méthodes de discrétisation en espace et une revue des schémas de Runge-Kutta (RK) qui sont couramment utilisés dans la littérature. Dans la seconde partie on présente une méthodologie pour construire deux familles de schémas A-stable pour un ordre quelcomque. Puis on fournit des schémas explicites, construits en maximisant leur nombre CFL pour un profil de spectre donné. Ces schémas explicites sont ensuite combinés aux schémas implicites A-stable, pour construire des schémas localement implicites que nous décrivons. En plus des tests de validations des schémas pour des problèmes en dimension un et deux de l’espace, nous présentons des résultats numériques obtenus en résolvant des problèmes de propagation d’ondes acoustiques et électromagnétiques en dimensions trois dans la troisième partie. / In this thesis, we study and develop different families of time integration schemes for linear ODEs. After presenting the space discretisation methods and a review of classical Runge-Kutta schemes in the first part, we construct high-order A-stable time integration schemes for an arbitrary order with low-dissipation and low-dispersion effects in the second part. Then we develop explicit schemes with an optimal CFL number for a typical profile of spectrum. The obtained CFL number and the efficiency on the typical profile for each explicit scheme are given. Pursuing our aim, we propose a methodology to construct locally implicit methods of arbitrary order. We present the locally implicit methods obtained from the combination of the A-stable implicit schemes we have developed and explicit schemes with optimal CFL number. We use them to solve the acoustic wave equation and provide convergence curves demonstrating the performance of the obtained schemes. In addition of the different 1D and 2D validation tests performed while solving the acoustic wave equation, we present numerical simulation results for 3D acoustic wave and the Maxwell’s equations in the last part.
|
Page generated in 0.0409 seconds