Spelling suggestions: "subject:"padlock probe"" "subject:"hadlock probe""
1 |
Molecular Tools for Biomarker DetectionChen, Lei January 2017 (has links)
The advance of biological research promotes the emerging of new methods and solutions to answer the biological questions. This thesis describes several new molecular tools and their applications for the detection of genomic and proteomic information with extremely high sensitivity and specificity or simplify such detection procedures without compromising the performance. In paper I, we described a general method namely super RCA, for highly specific counting of single DNA molecules. Individual products of a range of molecular detection reactions are magnified to Giga-Dalton levels that are easily detected for counting one by one, using methods such as low-magnification microscopy, flow cytometry, or using a mobile phone camera. The sRCA-flow cytometry readout presents extremely high counting precision and the assay’s coefficient of variation can be as low as 0.5%. sRCA-flow cytometry readout can be applied to detect the tumor mutations down to 1/100,000 in the circulating tumor cell-free DNA. In paper II, we applied the super RCA method into the in situ sequencing protocol to enhance the amplified mRNA detection tags for better signal-to-noise ratios. The sRCA products co-localize with primary RCA products generated from the gene specific padlock probes and remain as a single individual object in during the sequencing step. The enhanced sRCA products is 100% brighter than regular RCA products and the detection efficiency at least doubled with preserved specificity using sRCA compared to standard RCA. In paper III, we described a highly specific and efficient molecular switch mechanism namely RCA reporter. The switch will initiate the rolling circle amplification only in the presence of correct target sequences. The RCA reporter mechanism can be applied to recognize single stranded DNA sequences, mRNA sequences and sequences embedded in the RCA products. In paper IV, we established the solid phase Proximity Ligation Assay against the SOX10 protein using poly clonal antibodies. Using this assay, we found elevated SOX10 in serum at high frequency among vitiligo and melanoma patients. While the healthy donors below the threshold.
|
2 |
Biomolecular Analysis by Dual-Tag Microarrays and Single Molecule AmplificationEricsson, Olle January 2008 (has links)
<p>Padlock probes and proximity ligation are two powerful molecular tools for detection of nucleic acids and proteins, respectively. Both methods result in the formation of DNA reporter molecules upon recognition of specific target molecules. These reporter molecules can be designed to include tag sequences that can be analyzed by techniques for nucleic acid analysis. Herein, I present a dual-tag microarray (DTM) platform that is suitable for high-performance analyses of DNA reporter molecule libraries, generated by padlock and proximity probing reactions. The DTM platform was applied for analysis of mRNA transcripts using padlock probes, and of cytokines using proximity ligation. The platform drastically improved specificity of detection, and it allowed precise measurements of proteins and nucleic acids over wide dynamic ranges.</p><p>The thesis also presents two techniques for multi-probe analyses of biomolecules: the triple-specific proximity ligation assay (3PLA) for protein analyses, and the spliceotyping assay for mRNA analyses. 3PLA allows highly specific measurements of as little as hundreds of target protein molecules by interrogating three target epitopes simultaneously. In spliceotyping the exon composition of individual transcripts are represented as a series of tag sequences in DNA reporter molecules, via a series of target-dependent ligation reactions. Next, the splicing patterns along individual transcripts can be revealed by amplified single molecule detection and step-wise decoding.</p>
|
3 |
Detection of Biomolecules Using Volume-Amplified Magnetic NanobeadsZardán Gómez de la Torre, Teresa January 2012 (has links)
This thesis describes a new approach to biomolecular analysis, called the volume-amplified magnetic nanobead detection assay (VAM-DNA). It is a sensitive, specific magnetic bioassay that offers a potential platform for the development of low-cost, easy-to-use diagnostic devices. The VAM-NDA consists of three basic steps: biomolecular target recognition, enzymatic amplification of the probe-target complex using the rolling circle amplification (RCA) technique, and addition of target complementary probe-tagged magnetic nanobeads which exhibit Brownian relaxation behavior. Target detection is demonstrated by measuring the frequency-dependent complex magnetization of the magnetic beads. The binding of the RCA products (target DNA-sequence coils) to the bead surface causes a dramatic increase in the bead size, corresponding essentially to the size of the DNA coil (typically around one micrometer). This causes a decrease in the Brownian relaxation frequency, since it is inversely proportional to the hydrodynamic size of the beads. The concentration of the DNA coils is monitored by measuring the decrease in amplitude of the Brownian relaxation peaks of free beads. The parameters oligonucleotide surface coverage, bead concentration, bead size and RCA times were investigated in this thesis to characterize features of the assay. It was found that all of these parameters affect the outcome and efficiency of the assay. The possibility of implementing the assay on a portable, highly sensitive AC susceptometer platform was also investigated. The performance of the assay under these circumstances was compared with that using a superconducting quantum interference device (SQUID); the sensitivity of the assay was similar for both platforms. It is concluded that, the VAM-NDA opens up the possibility to perform biomolecular detection in point-of-care and outpatient settings on portable platforms similar to the one tested in this thesis. Finally, the VAM-NDA was used to detect Escherichia coli bacteria and the spores of Bacillus globigii, the non-pathogenic simulant of Bacillus anthracis. A limit of detection of at least 50 bacteria or spores was achieved. This shows that the assay has great potential for sensitive detection of biomolecules in both environmental and biomedical applications.
|
4 |
Biomolecular Analysis by Dual-Tag Microarrays and Single Molecule AmplificationEricsson, Olle January 2008 (has links)
Padlock probes and proximity ligation are two powerful molecular tools for detection of nucleic acids and proteins, respectively. Both methods result in the formation of DNA reporter molecules upon recognition of specific target molecules. These reporter molecules can be designed to include tag sequences that can be analyzed by techniques for nucleic acid analysis. Herein, I present a dual-tag microarray (DTM) platform that is suitable for high-performance analyses of DNA reporter molecule libraries, generated by padlock and proximity probing reactions. The DTM platform was applied for analysis of mRNA transcripts using padlock probes, and of cytokines using proximity ligation. The platform drastically improved specificity of detection, and it allowed precise measurements of proteins and nucleic acids over wide dynamic ranges. The thesis also presents two techniques for multi-probe analyses of biomolecules: the triple-specific proximity ligation assay (3PLA) for protein analyses, and the spliceotyping assay for mRNA analyses. 3PLA allows highly specific measurements of as little as hundreds of target protein molecules by interrogating three target epitopes simultaneously. In spliceotyping the exon composition of individual transcripts are represented as a series of tag sequences in DNA reporter molecules, via a series of target-dependent ligation reactions. Next, the splicing patterns along individual transcripts can be revealed by amplified single molecule detection and step-wise decoding.
|
5 |
In situ molecular profilling of the microenvironment of breast carcinomaKaira, Mustapha January 2015 (has links)
High stromal PDGF receptor B expression was shown to have strong prognostic value in a studyinvolving over 600 breast cancer patients however, the molecular role of the receptor in tumordevelopment remains unclear. In this project we studied the spatial distribution and expressionlevels of a panel genes and markers associated with PDGF signaling, in breast cancer tumormicroenvironment (TME) using a newly developed technique -in situ sequencing. The techniquerelies on padlock probes which we validated with corresponding RNA sequencing, microarray,and immunohistochemistry data. Our results showed that high PDGF receptor B mRNA colocalizedwith markers of two pathways, TGFβ and Hedgehog signaling; this suggests that theymight contribute to the PDGF-receptor B-driven tumor growth. We also showed that stromalPDGF signaling is stimulated predominantly by tumor cells. Finally, further expression profilingof each individual gene revealed that CXCL14 was mainly expressed in the stroma, ACTA2expression was enriched in the tumor/stroma boundary while the stem-cell marker, OCT3, wasexpressed in the interior of the tumor cells.
|
6 |
Genotyping RNA and DNA using padlock probesAntson, Dan-Oscar January 2001 (has links)
Novel techniques are needed to investigate the genetic variation revealed in the first draft of the human genome sequence. Padlock probes are recently developed reagents, suitable for detecting single-nucleotide variations of DNA and RNA in situ or in solution. The probes are oligonucleotides of about 70-140 nucleotides that can be circularized by ligation in the presence of a correct target sequence. Standard chemical synthesis of padlock probes is difficult due to the requirement for intact 5' and 3' ends of these long oligonucleotides. A novel PCR-based method is presented in this thesis, whereby longer, densely labeled padlock probes can be made as compared to conventional chemical synthesis. PCR-generated padlock probes produced a stronger signal and a more resolved staining pattern, compared to chemically synthesized probes in fluorescence in situ analysis of an alpha-satellite sequence variant present in human chromosomes 13 and 21. Padlock probes used for in situ analysis of metaphase chromosomes had an optimal length of 140 nucleotides. They were used to identify individual chromosomes 7 and 15, and to follow the transmission of chromosome homologues for two consecutive generations. The specificity of the padlock probes to detect single copy genes in genomic DNA samples was demonstrated by detecting a single-nucleotide mutation in the ATP7B gene. It has not previously been known if T4 DNA ligase can be used for RNA sequence analysis. In this thesis, it is demonstrated that T4 DNA ligase can be used for distinguishing single-nucleotide RNA sequence variants. Reaction conditions were defined where most mismatches could be discriminated by a factor of 80 and all mismatches by a factor of at least 20. Under these conditions padlock probes could detect and distinguish RNA sequence variants with ligation efficiency almost as high as on the corresponding DNA sequence. A detailed study of the parameters influencing RNA-templated DNA ligation revealed that DNA ligation on RNA templates proceeds at a much slower rate compared to the same reaction on DNA, and that a molar excess of enzyme is required. Furthermore, the ligation reaction is inhibited by high concentrations of the cofactor ATP and NaCl. The work presented in this thesis demonstrates that PCR-generated padlock probes can detect and distinguish single-nucleotide variation in both RNA and DNA.
|
7 |
Ligation-mediated Molecular Analysis of Influenza Subtypes, Splicing and Protein GlycosylationConze, Tim January 2010 (has links)
Binder-based assays are employed throughout the life sciences. Powerful signal amplification techniques have enabled detection of very rare molecule species diluted in simple buffers. Unspecific binding of primary binders leads to increased background in more complex samples. By requiring two recognition events, ligation-based molecular analyses provide highly specific detection of biomolecules in complex samples. We developed a highly multiplexed padlock-ligation assay targeting signature sequences in the hemagglutinin and neuraminidase genes. From a panel of 77 avian influenza isolates of all major serotypes, 97% were genotyped correctly in accordance with previous classifications by classical diagnostic methods (Paper I). Alternative splicing is an important mechanism expanding the proteome. Current analysis techniques fail to provide sequences of complete transcripts beyond the read length of sequencing instruments. We devised and implemented a strategy to compress the sequence information contained in the splicing pattern of a transcript into the presence or absence of sequence-blocks. We demonstrate that this assay yields information about the splicing patterns in thousands of transcripts from cellular cDNA (Paper II). Expression changes of mucin proteins and glycosylation structures are frequently observed from the early stages of cancer development. Expression of mucin 2 and sialyl-Tn are common features of intestinal metaplasia and gastric cancer, and are known to co-locate. Here we have developed an in situ proximity ligation assay (PLA) directed against mucin 2 and sialyl-Tn. Our study on intestinal metaplasia and gastric cancer tissue sections identified mucin 2 as a major carrier of sialyl-Tn in these conditions, and demonstrated how conveniently glycosylation of proteins can be studied by in situ PLA (Paper III). This thesis shows how the dual recognition requirement of ligation-based assays can be employed to detect target molecules with high specificity, to analyze several sequence features of nucleic acids or to study the proximity of two antigens in situ.
|
8 |
Single Molecule Detection : Microfluidic Automation and Digital QuantificationKühnemund, Malte January 2016 (has links)
Much of recent progress in medical research and diagnostics has been enabled through the advances in molecular analysis technologies, which now permit the detection and analysis of single molecules with high sensitivity and specificity. Assay sensitivity is fundamentally limited by the efficiency of the detection method used for read-out. Inefficient detection systems are usually compensated for by molecular amplification at the cost of elevated assay complexity. This thesis presents microfluidic automation and digital quantification of targeted nucleic acid detection methods based on padlock and selector probes and rolling circle amplification (RCA). In paper I, the highly sensitive, yet complex circle-to-circle amplification assay was automated on a digital microfluidic chip. In paper II, a new RCA product (RCP) sensing principle was developed based on resistive pulse sensing that allows label free digital RCP quantification. In paper III, a microfluidic chip for spatial RCP enrichment was developed, which enables the detection of RCPs with an unprecedented efficiency and allows for deeper analysis of enriched RCPs through next generation sequencing chemistry. In paper IV, a smart phone was converted into a multiplex fluorescent imaging device that enables imaging and quantification of RCPs on slides as well as within cells and tissues. KRAS point mutations were detected (i) in situ, directly in tumor tissue, and (ii) by targeted sequencing of extracted tumor DNA, imaged with the smart phone RCP imager. This thesis describes the building blocks required for the development of highly sensitive low-cost RCA-based nucleic acid analysis devices for utilization in research and diagnostics.
|
9 |
Readout Strategies for Biomolecular AnalysesGöransson, Jenny January 2008 (has links)
This thesis describes three readout formats for molecular analyses. A common feature in all works is probing techniques that upon specific target recognition ideally results in equimolar amounts of DNA circles. These are then specifically amplified and detected using any of the techniques presented herein. The first paper presents a method that enables homogeneous digital detection and enumeration of biomolecules, represented as fluorescence-labelled DNA macromolecules. This method offers precise measurements to be performed with a wide linear dynamic range. As an application, two closely related bacterial species were selectively detected. The second paper further investigates and optimizes the properties of the technique presented in paper one. The third paper demonstrates a platform that enables simultaneous quantitative analysis of large numbers of biomolecules. The array format and decoding scheme together propose a digital strategy for decoding of biomolecules. The array and the decoding procedure were characterized and evaluated for gene copy-number measurements. The fourth paper examines a new strategy for non-optical measurements of biomolecules. Characteristics of this technique are investigated, and compared to its optical equivalent, fluorescence polarization.
|
10 |
Application of Padlock Probe Based Nucleic Acid Analysis In SituHenriksson, Sara January 2010 (has links)
The great variation displayed by nucleic acid molecules in human cells, and the continuous discovery of their impact on life, consequently require continuous refinements of molecular analysis techniques. Padlock probes and rolling circle amplification offer single nucleotide discrimination in situ, a high signal-to-noise ratio and localized detection within cells and tissues. In this thesis, in situ detection of nucleic acids with padlock probes and rolling circle amplification was applied for detection of DNA in the single cell gel electrophoresis assay to detect nuclear and mitochondrial DNA. This assay is used to measure DNA damage and repair. The behaviour of mitochondrial DNA in the single cell gel electrophoresis assay has earlier been controversial, but it was shown herein that mitochondrial DNA diffuses away early in the assay. In contrast, Alu repeats remain associated with the nuclear matrix throughout the procedure. A new twelve gel approach was also developed with increased throughput of the single cell gel electrophoresis assay. DNA repair of three genes OGG1, XPD and HPRT and of Alu repeats after H2O2 induced damage was further monitored. All three genes and Alu repeats were repaired faster than total DNA. Finally, padlock probes and rolling circle amplification were applied for detection of the single stranded RNA virus Crimean Congo hemorrhagic fever virus. The virus was detected by first reverse transcribing RNA into cDNA.. The virus RNA together with its complementary RNA and the nucleocapsid protein were detected in cultured cells. The work presented here enables studies of gene specific damage and repair as well as viral infections in situ. Detection by ligation offers high specificity and makes it possible to discriminate even between closely related molecules. Therefore, these techniques will be useful for a wide range of applications within research and diagnostics.
|
Page generated in 0.0575 seconds