• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 135
  • 39
  • 37
  • 36
  • 29
  • 19
  • 17
  • 17
  • 17
  • 16
  • 16
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Diatom Records of Holocene Climatic and Hydrological Changes in the Western Hudson Bay Region, Canada

Friel, Charlotte 07 December 2011 (has links)
Rapidly changing climates in northern Canada make the western Hudson Bay region an area of high importance for paleoenvironmental studies. Long-term changes in assemblages of diatoms (microscopic algae) were analyzed from lake sediment cores from Baker Lake, Nunavut, and Lake AT01, northern Ontario, to track responses to past environmental changes. Diatom assemblages dating to 6700 years ago in AT01 were initially characterized by cold- tolerant Fragilarioid assemblages, but shifted to an assemblage dominated by large benthic species and Cymbella diluviana consistent with the timing of the Holocene Thermal Maximum after 6300 years BP. A possible drainage event in Lake AT01 may have added significant hydrologic control on the diatom assemblages. The post-industrial period is marked by the largest compositional shifts in both records. Assemblages during the 20th century are indicative of reduced ice cover and enhanced thermal stratification linked to a climate regime shift noted in Hudson Bay since the mid-1990’s.
62

Diatom Records of Holocene Climatic and Hydrological Changes in the Western Hudson Bay Region, Canada

Friel, Charlotte 07 December 2011 (has links)
Rapidly changing climates in northern Canada make the western Hudson Bay region an area of high importance for paleoenvironmental studies. Long-term changes in assemblages of diatoms (microscopic algae) were analyzed from lake sediment cores from Baker Lake, Nunavut, and Lake AT01, northern Ontario, to track responses to past environmental changes. Diatom assemblages dating to 6700 years ago in AT01 were initially characterized by cold- tolerant Fragilarioid assemblages, but shifted to an assemblage dominated by large benthic species and Cymbella diluviana consistent with the timing of the Holocene Thermal Maximum after 6300 years BP. A possible drainage event in Lake AT01 may have added significant hydrologic control on the diatom assemblages. The post-industrial period is marked by the largest compositional shifts in both records. Assemblages during the 20th century are indicative of reduced ice cover and enhanced thermal stratification linked to a climate regime shift noted in Hudson Bay since the mid-1990’s.
63

Geochemical and stable isotopic evaluation of Fenghuoshan group lacustrine carbonates, north-central Tibet implications for the paleoaltimetry of the mid-tertiary Tibetan plateau /

Cyr, Andrew J. January 2004 (has links)
Thesis (Master of Science)--Miami University, Dept. of Geology, 2004. / Title from first page of PDF document. Document formatted into pages; contains [1], v, 76 p. : ill. Includes bibliographical references (p. 42-50).
64

Étude des Diatomées et paléolimnologie du Bassin tchadien au Cénozoïque supérieur

Servant-Vildary, Simone. January 1978 (has links)
Thesis--Paris VI, 1977. / Includes bibliographical references (t. 1, p. 321-346).
65

Ecosystem Responses to Holocene Climate Variability Through the Analysis of High-resolution Lake Sediment Cores from Southwestern Québec, Canada

Neil, Karen 14 September 2018 (has links)
Lake biotic responses to natural climate variability, fire disturbances, and human impacts over the Holocene were studied at two proximate sites in southwestern Québec. Sediments from Lac Noir and Lac Brûlé had annually deposited laminations (varves), enabling for the precise dating of continuous time-series and high-resolution analysis of subfossil diatom assemblages. The Lac Noir (45°46’31”N, 75°8’23”W, 176 m a.s.l.) record spanned ~11000 years of the Holocene. Stratigraphic changes in diatom assemblages of the lake could be divided into early, mid-, and late periods, broadly paralleling Milankovitch-scale climate intervals and vegetation changes inferred from regional palynological records. The early Holocene (11.1-8.0 ka) climate was cooler and dry, vegetation in the region was comprised of Picea-dominated woodlands, and the lake diatom flora included primarily benthic taxa. Warming in the mid-Holocene (8.0-3.6 ka) allowed for stabilization of soils and forests in the catchment, stronger thermal stratification in the lake, and resultant increases in oligo-mesotrophic diatom taxa such as Discostella stelligera. During the late Holocene (3.6 ka to present), an increase in the abundance of deciduous trees (e.g. Betula and Alnus) in response to cooling led to nutrient-enrichment and higher overall lake productivity. The record from Lac Brûlé (45°43’09”N, 75°26’32”W, 270 m a.s.l.) encompassed the last ~1200 years of the late Holocene. Generalized additive models (GAM) revealed a tight coupling between diatoms and catchment-mediated processes (e.g. vegetation and disturbances), which were closely aligned with climate variations. During the Medieval Warm Period (800-1300 CE), pollen-based inferences of warmer summer temperatures were associated with high abundances of Cyclotella bodanica var. intermedia and Cyclotella rossii; this signalled oligotrophic lake conditions and prolonged thermal stratification. The onset of the Little Ice Age (1450-1850 CE) marked a cooling in the region, and a decline in Tabellaria flocculosa str. IIIp indicated increased nutrient loading from the catchment area. Situated less than 300m from Lac Brûlé are remnants of the Wallingford-Back Mine, which ran from 1924-1972 CE; activities at the mine resulted in local changes to nutrient availability and primary productivity at this site. In previous studies of both Lac Noir and Lac Brûlé, pollen records had indicated overall similarities in the vegetation histories in response to climate variability during the late Holocene. Diatom assemblages were influenced by individual lake conditions and were thus unique to each site; nevertheless, they were closely linked with local and regional patterns of vegetation composition. A main point of difference in the paleo-records from both lakes was attributed to a local fire in the Lac Brûlé catchment at 1345 CE, which caused an early decline in hemlock (Tsuga). The decrease in hemlock was seen at Lac Noir only centuries later, and diatoms in each lake responded according to vegetation changes within their own respective catchments. This research shows that high-resolution sampling of lake sediments is able to detect diatom responses to both long-term and abrupt changes in the environment. Individual sites show similarly timed responses of other proxy-indicators, such as pollen and cladocera, to climate and land-use changes. However, distinct differences in the aquatic biota of well-dated proximate sites can be used to identify influences of regional climate variations, which are sometimes masked by localized, non-climatic processes.
66

The Role of Iron and Anthropogenic Activities in Eutrophication: A Contemporary and Paleolimnological Study

Varin, Marie-Pierre January 2016 (has links)
In this study, I examined water chemistry of 31 Canadian Shield lakes in relation to catchment characteristics to test the hypothesis that Shield lakes with more marble may exhibit iron (Fe) deficiency and, hence, be more vulnerable to eutrophication. I performed a diatom-based paleolimnological reconstruction of one of these lakes (Heney Lake), which was subjected to anthropogenic stresses including a fish farm. Results suggest that the presence of marble influenced lake chemistry, including lowering the ratio of Fe: P. The reconstruction of historical P concentrations was not statistically possible but past Fe could be inferred, which no previous study has attempted. Certain eutrophication-associated diatom species suggest that logging and European settlement beginning in the early XXth century led to a slight increase in nutrient concentrations. However, a more important diatom species shift was likely related to climate change, as observed in other temperate lakes worldwide.
67

Using Sediment DNA Archives for Interpreting Long-term Cyanobacterial Dynamics in the Anthropocene

Mejbel, Hebah Shaker 29 April 2022 (has links)
Climate change and eutrophication, accelerated by anthropogenic activities, have impacted aquatic ecosystems worldwide. These impacts have stimulated the expansion of cyanobacterial blooms which pose severe threats to ecosystem functioning, environmental health, and the economy. However, the long-term effects of environmental change on bloom-forming cyanobacteria are not well understood as traditional paleolimnological approaches are of limited use in the reconstruction of cyanobacterial dynamics through time. Here, sediment DNA (sedDNA) was used to investigate long-term cyanobacterial trends using sediments from two experimental (fertilized L227 and acidified L223) and two reference (L224 and L442) lakes in the Experimental Lakes Area, Canada. First, to determine whether taxonomic bias might arise from the cyanobacterial sediment record, I performed a 1-year incubation experiment comparing the degradation rates of selected cyanobacterial genes under contrasting environmental conditions. Based on first-order linear decay models, Synechococcus sp. (Synechococcales) decayed the slowest under cold, anoxic conditions, followed by Trichormus (Nostocales), then Microcystis (Chroococcales), suggesting differential preservation of DNA. I then compared the quantitative performance of droplet digital polymerase chain reaction (ddPCR) and high-throughput sequencing (HTS) for the analysis of sedDNA and found that the ddPCR results were more consistent with the known history of the lakes. Furthermore, ddPCR showed that cyanobacterial abundance increased over the past century in all study lakes, but the greatest increase was observed in experimentally fertilized L227. HTS revealed shifts in the cyanobacterial community towards Nostocales dominance and a decrease in alpha diversity in response to phosphorus-only additions. An increase in abundance of the mcyE gene (indicative of microcystin producing taxa) was uniquely observed in L227 when nitrogen additions ceased. Heating degree days were important in explaining variation in the cyanobacterial community composition in all lakes, but nutrients had a greater influence on the L227 community. When sediment data were compared to historical surface water phytoplankton records, moderate to strong correlations between the two archives were found, validating the use of sedDNA. This research demonstrated that sedDNA can elucidate cyanobacterial trends at the community, population, and species level over multidecadal timescales in response to environmental change.
68

Quantifying the Vulnerability of Arctic Water Supply Lakes to Environmental Change Through Paleolimnological Assessment

Cincio, Paige 20 November 2020 (has links)
Anthropogenic stressors to freshwater environments have perpetuated water quality and quantity challenges for northern communities across Arctic Canada, making drinking water resources a primary concern for Arctic populations. To understand the ecological trajectory of freshwater supply sources, we conducted a paleolimnological assessment on two supplemental sources of freshwater in Igloolik, Nunavut, Canada. A stratigraphic examination of bioindicators (Insecta: Diptera: Chironomidae) allowed for paleotemperature reconstructions with decadal and centennial resolution over the past 2000 years. Between 200 and 1900 CE, the sub-fossil chironomid community was comprised of cold-water taxa, such as Abiskomyia, Micropsectra radialis-type, and Paracladius. Reconstructed temperatures were consistent with known climate anomalies during this period. A rapid shift in the composition of the chironomid community to warm-water adapted taxa (Chironomus anthracinus-type, Dicrotendipes, and Tanytarsus lugens-type) in the late 20th century was observed in both systems. Our results demonstrate that these lake ecosystems are undergoing marked transformations to warmer, more nutrient-rich environments, and suggest water sustainability pressures on freshwater and human systems will likely continue in tandem with ongoing climate change. To contextualize the influence of recent warming and elucidate the status of water resource vulnerability over the longer term, paleolimnological methods can be usefully applied as components of vulnerability assessments.
69

Ostracodes as indicators of the Paleoenvironment in the Pliocene Glenns Ferry Formation, Glenns Ferry Lake, Idaho

Dennison-Budak, Cordelia W. 19 April 2010 (has links)
No description available.
70

A Re-Evaluation of Mountain Lake, Giles County, Virginia: Lake Origins, History and Environmental Systems

Cawley, Jon C. 17 December 1999 (has links)
This project included the following goals: 1. To review and assess the geomorphology and lake morphometry of Mountain Lake, Giles County, Virginia with regard to its age and origin. This included production of an updated bathymetric map of Mountain Lake using Sonar imaging of the lake bottom. 2. To evaluate present trophic conditions in the lake waters. This analysis included the first-reported nutrient conditions for input streams to the lake and rainwater. 3. To collect representative "modern" bottom sediment samples and to analyze these sediment samples for sedimentological characteristics, diatoms , and terrestrial pollen. This analysis focussed on present environmental conditions in the lake, and the determination of modern diatom thanatocommunities. 4. To collect complete bottom sediment cores from the lake. Coring was done using a diver-assisted manual coring device designed specifically for this project. 5. To analyze Mountain Lake sediment cores for sedimentology, age determination, and temporal differences in sediment characteristics, diatoms and pollen. This analysis focussed on interpretation and documentation of environmental changes through the lake's history. Primary discharge from the lake presently occurs through a leaky subterranean pathway associated with the deepest, crevice-like portion of the lake. This discharge results in the crevice drain not filling shut with sediment despite its location within the lowest portion of the lake. The lake structure, crevice, and subterranean drain are associated with a regional lineation feature represented in part by the path of Salt Pond Drain and a small input stream ("I-4") to the lake. Initial damming was caused by downdrop of overlying rock. The damming is not complete, and the rate of discharge through time is controlled, in part, by regional tectonic events and by a balance of hydrologic conditions and sedimentation factors. The present lake is generally oligotrophic in nature, with phosphorus representing the major limiting nutrient. Rainfall presently represents the largest source of nutrient to the lake. Present diatom flora in Mountain Lake includes 66 individual taxa, representing 25 genera. Of these, 12 forms or species have not been reported in Virginia inland waters prior to this project. The diatoms reflect the oligotrophic and circumneutral nature of the lake. At least seven diatom thanatocommunities can be defined in the lake, based on taxa, delineated by depth and nutrient conditions. The ratio metric of planktonic to littoral diatoms can be used to estimate past water depths in the lake from bottom sediment. An orange clay layer at 5 cm from the modern sediment/water interface represents human intervention in lake history, namely the hotel and road building in the early 20th Century. The age of the lake is greater than 6000 years. Specific 14C from sediment produced dates of 1860 +100, 4220 +50 and 6160 +70 bp. Within this interval, at least 6 extended periods of low or empty lake level occurred (at approximately 100, 400, 900, 1200, 1800, and 4200 yrs bp). Several of these low intervals are likely to correspond with cool dry conditions co-incident with solar minima events. When the lake has been low or empty, it has tended to develop Sphagnum bog conditions with the low lake surrounded by open or wooded meadows. Terrestrial flora surrounding the lake appears to have remained relatively similar through 6100 years, although red spruce originally accompanied hemlock. / Ph. D.

Page generated in 0.2601 seconds