Spelling suggestions: "subject:"4palladium catalysts"" "subject:"dipalladium catalysts""
81 |
Screening of substituted pyrazolone and pyrazole as ligands with palladium precursors in the Heck reactionBout, Wanda 03 1900 (has links)
M. Tech. (Department of Chemical Engineering, Faculty of Engineering and Technology): Vaal University of Technology / The arylation and alkenylation of alkenes under the influence of a palladium catalyst, commonly referred to as the Heck reaction, has been extensively exploited by synthetic chemists since its debut in the late 1960’s. A traditional Heck coupling is based on an aryl iodide or bromide as the electrophilic partner and a terminal alkene as the nucleophilic partner. Academic and industrial interest in this reaction has increased in recent years, fueled by the development of more active catalyst systems, the discovery of waste-free versions, and the desire to put the vast empirical data on a sound mechanistic basis. In this study, we wish to report the use of commercially available substituted pyrazolones (1-(4-Sulfophenyl)-3-methyl-5-pyrazolone (L1), 1-(2,5-Dicloro-4-sulfophenyl)-3-methyl-5-pyrazolone (L2) and 5-oxo-1-phenyl-2-pyrazolin-3-carboxylic acid (L3)) and pyrazoles (α-[(2-Ethoxy-2-oxoethoxy)imino]-3-pyrazole acetic acid (L4) and 3.5 dimethyl pyrazole (L5)) as auxiliary ligands in the Heck coupling reaction. These ligands were used either with PdCl2 or Pd(OAc)2 to catalyze the Heck reaction of iodobenzene with ethyl acrylate or butyl acrylate. GC-MS was used to monitor the reaction, percentage (%) conversions were determined based on the consumption of iodobenzene.
Different reaction parameters such as ligands, temperature, base, solvent and influence of time were investigated. It was observed that the lower conversion was obtained for ethyl acrylate and conversions above 80% were obtained for butyl acrylate. Ligand effect proved to be very crucial during the Heck coupling reactions of iodobenzene with butyl acrylate and ethyl acrylate. For instance in the absence of ligands with PdCl2, the conversions were 29 % and 44 % for butyl acrylate and ethyl acrylate, respectively. When Pd(OAc)2 was used in the absence of ligands the conversions were 25 % and 36 % for butyl acrylate and ethyl acrylate, respectively. In the study for the effect of temperature, 80 ◦C was observed as the best temperature since promising conversions were obtained with little or no sign of deactivation of the catalysts. On the other hand, increasing the temperature to 120 ◦C and above high percent conversions are observed; however deactivation of the catalysts occurs as observed from the precipitation of palladium black at the bottom of the vial. From the results obtained it is clear that pyrazolone and pyrazole ligands/palladium systems are important at very low catalyst loadings and mild temperatures. Based on the employed reaction conditions the influence of base suggested that the organic base triethylamine was the reagent of choice since better conversions were obtained compared to inorganic bases. The inhomogeneity of the inorganic base proved to be a disadvantage in the reaction of iodobenzene with butyl acrylate at employed reaction conditions. It was also found that parameters such as solvents and time effects were important in the Heck reaction. Polar aprotic solvents proved to be solvents of choice rather than non-polar solvents, from the investigated solvents DMF gave better conversions under the used reaction conditions giving average conversions of 78 % and 75 % for all the ligands in the presence of PdCl2 and Pd(OAc)2, respectively. During the investigation of time effect, it was noteworthy to observe that L4 had a slow initiation rate, for instance after 0.5 h conversions of 2 % and 10 % were obtained for catalytic systems, PdCl2 and Pd(OAc)2 respectively. Also it was observed that under the investigated parameters there was no need to run the reaction for 24 h because after 4 h not much of a difference in conversions was observed. In comparing the influence of these two different auxiliary ligands, pyrazolone based ligands were more efficient than pyrazole based ligands under the investigated parameters. The fully detailed information supporting this has been discussed in Chapter 4.
|
82 |
Carbon nanotubes and nanospheres: synthesis by nebulised spray pyrolysis and use in catalysis13 May 2009 (has links)
Ph.D. / This work presents a detailed study of the synthesis of carbon nanotubes and nanospheres by nebulised spray pyrolysis. This method has been used by other workers mainly for preparation of sub-micron particles and the deposition of thin films on various substrates. The effect of various synthesis parameters including the temperature, choice of the carbon source and the metal precursor as well as the carrier gas flow rate on the selectivity of the reaction and the properties of the carbon nanotubes produced was investigated. A major part of this work was devoted to a study of the effects of the addition of small quantities of oxygencontaining compounds (alcohols, esters and aldehydes) to the reaction mixture. The products were analysed using various methods including TEM, SEM, Laser- Raman spectroscopy and HRTEM. Furthermore, the possible use of carbon nanotubes and carbon nanospheres as supports for palladium in the hydrogenation of ethylene was investigated. Nebulised spray pyrolysis proved to be a suitable technique for the synthesis of well graphitized carbon nanotubes and carbon nanospheres with uniform diameters and it was demonstrated that good control of the carbon nanotube properties could be achieved by controlling the synthesis parameters. Better graphitization of the carbon nanotubes was observed at higher temperatures. Ferrocene, iron pentacarbonyl, nickelocene and cobaltocene were successfully used in carbon nanotube synthesis with the last two producing carbon nanotubes with diameters close to those on single-walled carbon nanotubes. Toluene (with and without acetylene as a supplementary carbon source), benzene, mesitylene, xylene and nhexane were successfully used to produce carbon nanotubes with a high degree of alignment while no success was achieved with ethanol. The poor yields obtained with ethanol appear to be a consequence of chemical changes in the ethanol induced by exposure to ultrasound irradiation. On the other hand, low concentrations of methyl acetate and ethyl acetate appear to enhance the production of carbon nanotubes. It was demonstrated that carbon nanotubes and nanospheres are suitable for use as supports for palladium in the hydrogenation of ethylene. Pd particles of uniform size were obtained and the conversion rates were slightly higher when the carbon nanotubes were pre-treated with a mixture of sulphuric acid and nitric acid.
|
83 |
Kinetics of Complete Methane Oxidation on Palladium Model CatalystsZhu, Guanghui 28 January 2004 (has links)
The catalytic combustion of methane in excess of O2 over Pd catalysts was studied on model catalysts, including polycrystalline palladium foil and palladium single crystals. The kinetics of this reaction could be measured at conditions not accessible to supported catalysts and, thus, the issues of structure sensitivity, mechanism, hysteresis on oxidation, and deactivation could be studied in detail. Methane oxidation on PdO was insensitive to the original metal surface structure which PdO grew from, with turnover rates in the range of 1.3-4.7 s-1 on (111), (100) and (110) single crystals at 160 Torr O2, 16 Torr CH-4, 1 Torr H2O and 598 K. Methane oxidation on Pd metal was also insensitive to the original surface structure, with the turnover rate in the range of 2.0-2.8 s-1 on the three single crystals at 2.3 Torr O2, 0.46 Torr CH4, 0.05 Torr H2O and 973 K. Since there is no support effect and the surface purity could be certified, these turnover rates for this reaction can be used as a benchmark. The turnover rate for methane oxidation was found to decrease 95% when PdO decomposed to Pd metal at 888 K, showing that PdO was more active than Pd metal for methane combustion at this temperature. Water inhibition to the reaction was not observed at a temperature above 813 K on both PdO and Pd metal, while it was observed at 598 K on PdO. The activation energy on PdO was 32 kJ mol-1 in the range of 783-873 K, while it was 125 kJ mol-1 in the range of 568-623 K. The activation energy on Pd metal was 125 kJ mol-1 in the range of 930-980 K. The change of reaction orders and activation energies suggests that the reaction mechanism is a function of temperature and palladium chemical states. We propose that adsorbed water, the most abundant surface intermediate at 598 K, was not present in significant quantities at temperatures above 783 K. This change in surface inhibition by water is the reason for lower activation energy at temperatures above 783 K. Interaction between the catalyst and support, or presence of impurities, is one of the factors for catalyst deactivation. The interaction between oxidized silicon and palladium was investigated on a polycrystalline palladium foil and on supported Pd/SiO2 catalysts. During methane oxidation, oxidized silicon covered the palladium oxide surface as observed by TEM on Pd/SiO2 catalysts and by XPS on palladium foil. On Pd foil, the source of silica was a silicon impurity, common on bulk metal samples. The migration of oxidized silicon onto PdO deactivated the catalysts by blocking the active sites for methane oxidation. Silicon oxide overlayers were also observed covering the Pd surface after reduction of Pd/SiO2 by H2 at 923 K.
|
84 |
Silica supported palladium nanoparticles for the decarboxylation of high-acid feedstocks: design, deactivation and regenerationPing, Eric Wayne 29 March 2011 (has links)
The major goals of this thesis were to (1) design and synthesize a supported catalyst with well-defined monodisperse palladium nanoparticles evenly distributed throughout an inorganic oxide substrate with tunable porosity characteristics, (2) demonstrate the catalytic activity of this material in the decarboxylation of long chain fatty acids and their derivatives to make diesel-length hydrocarbons, (3) elucidate the deactivation mechanism of supported palladium catalysts under decarboxylation conditions via post mortem catalyst characterization and develop a regeneration methodology thereupon, and (4) apply this catalytic system to a real low-value biofeedstock. In an effort to maximize loading and minimize mass transfer limitations, mesoporous silica MCF was synthesized as catalyst support. Functionalization with various silane ligands facilitated even distribution of palladium precursor salts throughout the catalyst particle, and, after reduction, monodisperse palladium nanoparticles approximately 2 nm in diameter. The Pd-MCF catalyst showed high one-time activity in the decarboxylation of fatty acids to hydrocarbons in dodecane at 300 °C. Subsequent reactions were performed on acid derivatives to elucidate a decarboxylation reaction pathway. The catalyst experienced severe deactivation after only one use and substantial effort was put into elucidating the nature of this deactivation via post mortem catalyst characterization. The deactivation was found not to be caused by nanoparticle sintering, agglomeration or ripening, but instead by organic deposition, mainly of reactant acid. A regeneration methodology was developed and subsequent catalyst reuse exhibited high activity. Finally, the Pd-MCF catalyst was applied to a wastewater-derived brown grease from a poultry rendering facility, in an unpolished and polished form. The latter was successfully decarboxylated to diesel-length hydrocarbons with high conversion and selectivity.
|
85 |
Surface characterization of Rh-Co, Ru-Co and Pd-Co bimetallic catalystsMoorthiyedath, Sajeev. January 2003 (has links)
Thesis (M.S.)--Mississippi State University. Department of Chemical Engineering. / Title from title screen. Includes bibliographical references.
|
86 |
Methane combustion over Pt and Pt-Pd catalystsAbbasi, Reza Unknown Date
No description available.
|
87 |
Design and synthesis of novel chiral arsines for asymmetric wittig reactions and Pd-catalyzed asymmetric allylic alkylation and asymmetric heck reactions /Wu, Huafeng. January 2004 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2004. / Includes bibliographical references (leaves 206-216). Also available in electronic version. Access restricted to campus users.
|
88 |
In-situ surface science studies of the interaction between sulfur dioxide and two-dimensional palladium loaded-cerium/zirconium mixed metal oxide model catalystsRomano, Esteban Javier, January 2005 (has links)
Thesis (Ph. D.)--Mississippi State University. Dave C. Swalm School of Chemical Engineering. / Title from title screen. Includes bibliographical references.
|
89 |
Eletrocatalisadores à base de paládio para células a combustível de etanol direto alcalinas (ADEFC)Moraes, Leticia Poras Reis de January 2015 (has links)
As células a combustível de etanol direto alcalinas (ADEFC) requerem o uso de eletrocatalisadores para promover a decomposição eletroquímica da molécula de etanol de maneira eficiente. Atualmente, a maioria dos catalisadores testados é à base de platina, devido a sua alta atividade catalítica. No entanto, a platina é um metal nobre de custo elevado, o que encarece os eletrodos da ADEFC e posterga sua comercialização. Sendo assim, novos catalisadores têm sido desenvolvidos, como ligas à base de paládio, por apresentarem alto desempenho para a reação de oxidação do etanol (EOR) em meio alcalino. Tais catalisadores são geralmente suportados em condutores de elétrons de elevada área de superfície específica, como o carvão, o qual pode ser submetido a funcionalização para a introdução de espécies oxigenadas em sua superfície que podem auxiliar nas propriedades eletrocatalíticas. No presente trabalho, catalisadores de Pd, PdNi, PdSn e PdNiSn suportados em carvão Vulcan XC72R funcionalizado foram sintetizados pelo método de impregnação-redução. Os suportes utilizados foram caracterizados por análise termogravimétrica (TGA), espectroscopia de infravermelho, análise textural, elementar e de cinzas, comprovando que a funcionalização promoveu um aumento de espécies oxigenadas na superfície do suporte. Os eletrocatalisadores foram caracterizados por TGA, energia dispersiva de raios X (EDX), voltametria cíclica (CV), difração de raios X (DRX), microscopia eletrônica de transmissão (MET) e testes em célula unitária ADEFC. As técnicas de EDX e de TGA comprovaram que as proporções e cargas metálicas obtidas foram similares à razão estequiométrica usada na síntese, indicando que o método de impregnação-redução foi eficiente. Os tamanhos de cristalito e de partícula foram determinados por DRX e MET, respectivamente, apresentando-se na faixa de ~ 5 a 14 nm. Os resultados de DRX sugerem que houve formação de liga entre Pd e Sn, e para os catalisadores contendo Ni foi observado um pico relativo a presença de óxidos, indicando que não houve formação de liga entre Pd e Ni. As medidas de CV dos eletrocatalisadores funcionalizados apresentaram deslocamento do potencial de início da EOR para valores mais negativos, com maiores valores de densidade de corrente que seus respectivos pares não funcionalizados. As medidas de CV e os testes em ADEFC unitária atestaram que os catalisadores PdSn e PdNiSn são eficientes frente à EOR em comparação ao Pd, sendo o catalisador ternário suportado em carvão funcionalizado (PdNiSn/CF) o que apresentou a melhor performance em ADEFC. / Direct Ethanol Fuel Cells (DEFC) require the use of electrocatalysts to promote the electrochemical decomposition of the ethanol molecule efficiently. Currently, most of the electrocatalysts are platinum (Pt) based, which exhibits high catalytic activity in acid media. However, Pt has high cost, which postpones the fuel cell commercialization. In this context, new platinum-free catalysts have been developed, as palladium (Pd) and Pd based alloys, as an outcome of the high catalytic activity for ethanol oxidation reaction (EOR) in alkaline media. As the electrocatalysis is a surface phenomenon, the catalysts are usually deposited on electron conducting supports with high surface specific area. In order to create functional sites on the support surface, chemical treatments can be performed to incorporate oxygenated species in the carbon surface. In the present work, electrocatalysts of Pd, PdNi, PdSn and PdNiSn supported on functionalized Vulcan XC72R were synthesized by the impregnation-reduction method. The catalyst supports were characterized by thermogravimetric analysis (TGA), infrared spectroscopy, textural, elemental and ash analyzes, which confirmed that the functionalization promoted an increase of the oxygenated species on the support surface. The electrocatalysts were characterized by TGA, energy dispersive X-rays (EDX), cyclic voltammetry (CV), X-ray diffraction (XRD), transmission electron microscopy (TEM), and tested in ADEFC unit cell. The EDX and TGA measurements confirmed that the synthesis method allowed preparing the electrocatalysts with the expected composition metallic loading. The crystallite and particle sizes, estimated by XRD and TEM, respectively, were in the nanometric range ~ 5 a 14 nm. The XRD measurements indicated the formation of alloy between Pd and Sn, and for the Ni containing catalysts it was observed the oxide formation, suggesting no alloy formation between Pd and Ni. The CV curves for the functionalized electrocatalysts evidenced that the onset potential for EOR towards more negative values, with higher current density values compared to the non-funcionalized samples. The CV measurements and ADEFC tests showed that the electrocatalysts PdSn and PdNiSn exhibited high performance for the EOR compared to Pd, in such a way that the ternary electrocatalyst supported on functionalized carbon (PdNiSn/CF) exhibited the highest performance in ADEFC.
|
90 |
Eletrocatalisadores à base de paládio para células a combustível de etanol direto alcalinas (ADEFC)Moraes, Leticia Poras Reis de January 2015 (has links)
As células a combustível de etanol direto alcalinas (ADEFC) requerem o uso de eletrocatalisadores para promover a decomposição eletroquímica da molécula de etanol de maneira eficiente. Atualmente, a maioria dos catalisadores testados é à base de platina, devido a sua alta atividade catalítica. No entanto, a platina é um metal nobre de custo elevado, o que encarece os eletrodos da ADEFC e posterga sua comercialização. Sendo assim, novos catalisadores têm sido desenvolvidos, como ligas à base de paládio, por apresentarem alto desempenho para a reação de oxidação do etanol (EOR) em meio alcalino. Tais catalisadores são geralmente suportados em condutores de elétrons de elevada área de superfície específica, como o carvão, o qual pode ser submetido a funcionalização para a introdução de espécies oxigenadas em sua superfície que podem auxiliar nas propriedades eletrocatalíticas. No presente trabalho, catalisadores de Pd, PdNi, PdSn e PdNiSn suportados em carvão Vulcan XC72R funcionalizado foram sintetizados pelo método de impregnação-redução. Os suportes utilizados foram caracterizados por análise termogravimétrica (TGA), espectroscopia de infravermelho, análise textural, elementar e de cinzas, comprovando que a funcionalização promoveu um aumento de espécies oxigenadas na superfície do suporte. Os eletrocatalisadores foram caracterizados por TGA, energia dispersiva de raios X (EDX), voltametria cíclica (CV), difração de raios X (DRX), microscopia eletrônica de transmissão (MET) e testes em célula unitária ADEFC. As técnicas de EDX e de TGA comprovaram que as proporções e cargas metálicas obtidas foram similares à razão estequiométrica usada na síntese, indicando que o método de impregnação-redução foi eficiente. Os tamanhos de cristalito e de partícula foram determinados por DRX e MET, respectivamente, apresentando-se na faixa de ~ 5 a 14 nm. Os resultados de DRX sugerem que houve formação de liga entre Pd e Sn, e para os catalisadores contendo Ni foi observado um pico relativo a presença de óxidos, indicando que não houve formação de liga entre Pd e Ni. As medidas de CV dos eletrocatalisadores funcionalizados apresentaram deslocamento do potencial de início da EOR para valores mais negativos, com maiores valores de densidade de corrente que seus respectivos pares não funcionalizados. As medidas de CV e os testes em ADEFC unitária atestaram que os catalisadores PdSn e PdNiSn são eficientes frente à EOR em comparação ao Pd, sendo o catalisador ternário suportado em carvão funcionalizado (PdNiSn/CF) o que apresentou a melhor performance em ADEFC. / Direct Ethanol Fuel Cells (DEFC) require the use of electrocatalysts to promote the electrochemical decomposition of the ethanol molecule efficiently. Currently, most of the electrocatalysts are platinum (Pt) based, which exhibits high catalytic activity in acid media. However, Pt has high cost, which postpones the fuel cell commercialization. In this context, new platinum-free catalysts have been developed, as palladium (Pd) and Pd based alloys, as an outcome of the high catalytic activity for ethanol oxidation reaction (EOR) in alkaline media. As the electrocatalysis is a surface phenomenon, the catalysts are usually deposited on electron conducting supports with high surface specific area. In order to create functional sites on the support surface, chemical treatments can be performed to incorporate oxygenated species in the carbon surface. In the present work, electrocatalysts of Pd, PdNi, PdSn and PdNiSn supported on functionalized Vulcan XC72R were synthesized by the impregnation-reduction method. The catalyst supports were characterized by thermogravimetric analysis (TGA), infrared spectroscopy, textural, elemental and ash analyzes, which confirmed that the functionalization promoted an increase of the oxygenated species on the support surface. The electrocatalysts were characterized by TGA, energy dispersive X-rays (EDX), cyclic voltammetry (CV), X-ray diffraction (XRD), transmission electron microscopy (TEM), and tested in ADEFC unit cell. The EDX and TGA measurements confirmed that the synthesis method allowed preparing the electrocatalysts with the expected composition metallic loading. The crystallite and particle sizes, estimated by XRD and TEM, respectively, were in the nanometric range ~ 5 a 14 nm. The XRD measurements indicated the formation of alloy between Pd and Sn, and for the Ni containing catalysts it was observed the oxide formation, suggesting no alloy formation between Pd and Ni. The CV curves for the functionalized electrocatalysts evidenced that the onset potential for EOR towards more negative values, with higher current density values compared to the non-funcionalized samples. The CV measurements and ADEFC tests showed that the electrocatalysts PdSn and PdNiSn exhibited high performance for the EOR compared to Pd, in such a way that the ternary electrocatalyst supported on functionalized carbon (PdNiSn/CF) exhibited the highest performance in ADEFC.
|
Page generated in 0.046 seconds