• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 15
  • 10
  • 6
  • 6
  • 4
  • 2
  • Tagged with
  • 97
  • 97
  • 97
  • 55
  • 42
  • 22
  • 21
  • 20
  • 18
  • 16
  • 15
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Neuroendocrine prostate tumors mimic endocrine differentiation of pancreatic beta cells in 12T-10 mice foxa2 and mash-1 the key players /

Gupta, Aparna, January 2007 (has links)
Thesis (Ph. D. in Cancer Biology)--Vanderbilt University, Aug. 2007. / Title from title screen. Includes bibliographical references.
52

Modulação de peroxirredoxinas em linhagem de células beta produtoras de insulina expostas à citocinas / Modulation of peroxirredoxins in insulin-producing beta cells exposed to cytokines

Paula, Flávia Maria Moura de, 1985- 04 October 2013 (has links)
Orientadores: Antonio Carlos Boschiero, Kléber Luiz de Araújo e Souza / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-22T22:13:57Z (GMT). No. of bitstreams: 1 Paula_FlaviaMariaMourade_D.pdf: 1277288 bytes, checksum: fbf2861e21e4c2c3095813e5df9456e2 (MD5) Previous issue date: 2013 / Resumo: Durante a instalação do diabetes tipo 1 as células beta pancreáticas são alvos do ataque pelo sistema de defesa do organismo. A morte das células beta, em geral por apoptose, é provocada por contato direto com células ativadas do sistema imune e por mediadores inflamatórios tais como: citocinas pró-inflamatórias, quemocinas e radicais livres. As citocinas pró-inflamatórias, como IL1-beta, TNF-alpha e IFN-gamma, produzem grande quantidade de ROS e RNS no interior das células beta e estas, por sua vez, possuem uma baixa defesa anti-oxidante enzimática, principalmente ao que se refere às enzimas que degradam H2O2, como catalase e glutationa peroxidase. Tal combinação resulta no surgimento de estresse oxidativo e morte celular. Adicionalmente, outro sistema de peroxidases, as PRDXs, também atuam na proteção das células beta contra o estresse oxidativo. Neste sentido, o estudo sobre a modulação de PRDXs por agentes inflamatórios é de grande valia, à medida que se tenta descobrir novas vias intracelulares desencadeadas pelas citocinas e alternativas para suprir a vulnerabilidade das células beta pancreáticas ao estresse oxidativo. Para isso utilizamos linhagem de células beta produtoras de insulina RINm5F. Estas células foram expostas às citocinas pró-inflamatórias IL1-beta, TNF-alpha e IFN-gamma e à anti-inflamatória IL-4 e a expressão das PRDXs foi analizada. Nossos resultados demonstram que IFN-gamma e TNF-alpha reduzem a expressão da PRDX6. Quando separadas, essas citocinas alteram somente a expressão protéica, através da ativação de sistemas de proteólise, especialmente de calpaínas e ubiquitina-proteassomo, e via ativação da JNK/c-Jun. A pré-incubação das células RINm5F com a citocina antiinflamatória IL4, bloqueia os efeitos do TNF-alpha ou IFN-gamma sobre a expressão da PRDX6. Em conjunto, IFN-gamma e TNF-alpha reduzem tanto a expressão gênica quanto protéica da PRDX6. As alterações transcricionais ocorrem, provavelmente, por ação sinérgica de mais de uma via intracelular, neste caso, NFkB (ativado pelo TNF-alpha) e STAT1 (ativado pelo IFN-gamma), sendo necessária a participação dessas duas vias para a modulação gênica da PRDX6. A deleção dessa enzima aumenta a suceptibilidade das células RINm5F aos efeitos deletérios de IFN-gamma, TNF-alpha e H2O2, sugerindo função importante da PRDX6 na proteção das células beta ao estresse oxidativo / Abstract: Peroxiredoxins are a family of six antioxidant enzymes (PRDX1-6), and may be an alternative system for the pancreatic beta cells to cope with oxidative stress. This study investigated whether the main diabetogenic pro-inflammatory cytokines or the antiinflammatory cytokine IL-4 modulate PRDXs levels and putative intracellular pathways important for this process in the insulin-producing RINm5F cells. RINm5F cells expressed significant amounts of PRDX1, PRDX3 and PRDX6 enzymes. Only PRDX6 was modulated by cytokines, showing both mRNA and protein down-regulation following incubation of RINm5F cells with TNF-alpha and IFN-gamma but not with IL-1beta. Separately IFN-gamma or TNF-alpha decreased PRDX6 protein but not mRNA levels. The blockage of the JNK signalling and of the calpains and proteasome proteolysis systems restored PRDX6 protein levels. IL-4 alone did not modulate PRDXs levels. However, pre/co-incubation with IL-4 substantially prevented the decrease in PRDX6 induced by proinflammatory cytokines. Knockdown of PRDX6 increased susceptibility of RINm5F cells to the deleterious effects of pro-inflammatory cytokines and to oxidative stress. These results show that, from the PRDXs highly expressed in RINm5F cells, only PRDX6 is modulated by the diabetogenic cytokines IFN-gamma and TNF-alpha. This PRDX6 downregulation depends on the Calpain and proteasome systems and JNK signalling. PRDX6 is an important enzyme for protection against oxidative stress and the interaction between pro- and anti-inflammatory cytokines might be important to determine the antioxidant capacity of the cells / Doutorado / Fisiologia / Doutora em Biologia Funcional e Molecular
53

Obtenção e caracterização de células derivadas do pâncreas fetal canino / Obtention and characterization of derivated cells from canine fetal pancreas

Bruna Andrade Aguiar 15 June 2016 (has links)
A Diabetes mellitus em cães é cada vez mais frequente, decorrente de fatores genéticos e/ou ambientais, como um distúrbio endócrino que, de forma semelhante à que ocorre em humanos, falha no controle adequado de glicose no sangue, desencadeia a hiperglicemia, glicosúria e perda de peso. A terapia celular utilizando as células beta-pancreáticas tem sido alvo de estudos, devido à grande demanda de novos casos de Diabetes mellitus e à falta de órgãos para transplantes em humanos e animais. Acredita-se que a ciência possa responder e inovar em tratamentos, encontrando a possível cura para esta doença complexa. Portanto, o objetivo deste estudo foi obter e caracterizar células derivadas do pâncreas fetal canino de animais com idades compreendidas entre 50 e 60 dias de gestação. As células pancreáticas de fetos caninos apresentam morfologia fibroblastóide e crescimento em monocamada em cultivo, apresentam células pluripotentes e proliferativas, não são tumorigênicas e apresentam expressão de PDX1, um fator de transcrição que tem papel importante na ativação do gene promotor da insulina. O pâncreas possui inervação simpática, observado por fibras nervosas TH+. Histologicamente, o pâncreas fetal canino apresenta ácinos num estágio de organização avançado, com parênquima semelhante ao encontrado no cão adulto. As ilhotas pancreáticas são distribuídas no tecido de maneira irregular, organizando-se em pequenos aglomerados de células por entre os ácinos, especialmente próximas aos vasos sanguíneos. A coloração com Ditizona permitiu inferir a presença de insulina no tecido pancreático, o que foi comprovado mediante técnica de imunofluorescência, além da presença de células que expressam o hormônio somatostatina. Os resultados desta investigação indicam que o pâncreas fetal canino demonstra características favoráveis para ser uma fonte viável de células para estudos aplicados à terapia celular em cães. Outras investigações referentes à comprovação da produção de insulina in vitro por essas células se fazem necessárias / Diabetes mellitus in dogs is increasingly common, due to genetic and/or environmental factors such as an endocrine disorder, similarly to what occurs in humans, failure to adequately control blood glucose triggers hyperglycemia, glycosuria and weight loss. Cell therapy using the pancreatic beta cells has been the subject of studies, due to the great demand of new cases of diabetes mellitus and the lack of organs for transplants in humans and animals. It is believed that science can respond and innovate treatments, finding a possible cure for this disease complex. Therefore, the objective of this study was to obtain and characterize derived cells from canine fetal pancreas, of animals aged between 50 and 60 days of gestation. The pancreatic cells of canine fetuses exhibit fibroblastoid morphology and growth in monolayer culture, exhibit pluripotent and proliferative cells, are not tumorigenic and have PDX1 expression, a transcription factor that plays an important role in the activation of the insulin gene promoter. The pancreas has sympathetic innervation observed by TH+ nerve fibers. Histologically, the fetal pancreatic acini canine presents an advanced stage organization with similar parenchyma that found in adult dog. The pancreatic islets are distributed in the fabric unevenly, organizing themselves into small clusters of cells through the acini, especially close to the blood vessels. Staining with Dithizone allowed inferring the presence of insulin in the tissue, which was confirmed by immunofluorescence, in addition to cells that express somatostatin. The results of this investigation indicate that the canine fetal pancreas shows favorable characteristics to be a feasible source of cells for cell therapy applied to studies in dogs. Further investigation regarding the evidence of in vitro production of insulin by these cells are required
54

Studies of the Pancreatic Beta-cell Metallome

Slepchenko, Kira G. 24 May 2022 (has links)
No description available.
55

The role of two pore channels (TPCs) in pancreatic beta cell stimulus-secretion coupling

Heister, Paula Maria January 2012 (has links)
This thesis presents an investigation into the role of the recently identified two pore channels (TPCs) in β-cell stimulus-secretion coupling. TPCs are the receptors for calcium mobilising messenger nicotinic acid adenine dinucleotide phosphate (NAADP) located in the membrane of acidic intracellular calcium stores. It is proposed that they are responsible for the ATP-sensitive potassium channel (Katp channel) independent pathway of stimulus-secretion coupling; and that this pathway is not subordinate to the KAT? channel dependent pathway; but an alternative explanation of stimulus-secretion coupling in its own right. The first section of this thesis presents a characterisation of sub-membrane cal- cium signals observed in primary mouse β-cells in response to glucose and the membrane-permeable acetoxymethyl ester form of NAADP (NAADP-AM) using the non-ratiometric fluorescent calcium indicator fluo-4 and total internal reflection (TIRF) microscopy. These are compared to global cytosolic calcium changes observed with epifluorescence microscopy. Factors affecting the shape and time course of re- sponses are investigated, and pharmacological tools used to provide evidence for the role of intracellular calcium release from acidic stores mediated by NAADP. Having characterised the calcium responses of β-cells using TIRF; the second part of the thesis examines the effects of knocking out TPC2 (single KO), or both TPC1 and TPC2 (DKO) on these responses; after an initial assessment of pancreatic islet and β-cell morphology using electron microscopy. Gender differences in β-cell responses to glucose and NAADP are assessed in both wild type and knockout animals. Finally, the third section presents the discovery of elementary calcium release events in pancreatic β-cells. The current project visualises what are likely the triggering events for the global calcium signals examined in sections one and two. They take the form of localised calcium release in response to NAADP-AM and glucose; akin to sparks and puffs observed by stimulation with cADPR and IP3. Optical quantal analysis demonstrates the quantal nature of the events and estimates the size of the unitary calcium release unit (CRU) for NAADP. .
56

Genetic association of islet amyloid polypeptide (IAPP) encoding pathways in pancreatic beta-cells with type 2 diabetes complemented by functional study. / CUHK electronic theses & dissertations collection

January 2011 (has links)
Lam, Kwok Lim. / "October 2010." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 142-173). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
57

Functional Studies of Genes Associated with Muscle Growth in Pigs and Hair Greying in Horses

Jiang, Lin January 2012 (has links)
Domestic animals have become very different from their wild ancestors during domestication and animal breeding. This provides a good model to unravel the molecular mechanisms underlying phenotypic variation. In my thesis I have studied genes affecting two important traits, leanness in pigs and hair greying-associated melanoma in horses. In the first part of the thesis, I focused on an intronic mutation leading to more muscle growth and less fat deposition in domestic pigs to identify a transcription factor (TF) that binds to the regulatory element overlapping with the mutation. The aim has been to further study the function of the previously unknown TF in mouse myoblast cells and in insulin-producing cells (Paper I-III). We discovered a new TF ZBED6 binding to intron 3 of the IGF2 gene, in which a single nucleotide substitution in pigs abrogates the binding and causes increased leanness in domestic pigs. Silencing of ZBED6 expression in mouse myoblasts increased Igf2 expression, cell proliferation and migration, and myotube formation. This result is in line with the increased leanness phenotype in mutant pigs. Chromatin Immunoprecipitation-sequencing (ChIP-seq) using an anti-ZBED6 antibody identified 1200 ZBED6 target genes besides IGF2 and many are TFs controlling fundamental biological processes. In the first follow-up study we found ZBED6 mainly affected the expression of muscle protein genes by directly regulating Igf2 and Twist2 expression, in agreement with our previous observation of faster myotube formation in ZBED6-silenced cells. ChIP-seq with antibodies against six different histone modifications revealed that ZBED6 preferentially binds to active promoters and modulates transcriptional activity by a novel mechanism rather than by recruiting repressive histone modifications. The second follow-up study revealed that ZBED6 affects the morphology and insulin content and release in pancreatic ß cells. In the second part (Paper IV), we investigate the functional significance of an intronic duplication in the Syntaxin 17 (STX17) gene causing hair greying and melanoma in horses. We found two Microphtalmia-associated transcription factor (MITF) binding sites within the duplication and showed that the duplicated sequence up-regulates reporter gene expression in a melanocyte-specific manner both by reporter assays in mouse melanocytes and in transgenic zebrafish. These results established that the intronic duplication acts as a melanocyte-specific enhancer that becomes much stronger when it is duplicated.
58

Insulin secretion dynamics of recombinant hepatic and intestinal cells

Gulino, Angela Marie 31 March 2008 (has links)
Hepatic and intestinal endocrine cells are potentially helpful targets for recombinant insulin expression. As the two cell types exhibit different secretion kinetics,it has been hypothesized that a combination of the two would better approximate insulin secretion kinetics from normal, functioning beta-cells than either cell type alone. This hypothesis was tested using two hepatic cell lines transiently transduced with one of three adenoviruses for insulin expression along with a stably transfected recombinant intestinal L cell line. The insulin secretion kinetics were analyzed for both the hepatic and intestinal cells to determine the potential of combining them to reproduce the insulin secretion kinetics of a normal, functioning beta-cell. It was observed that the two recombinant hepatic cell lines secreted insulin in a more sustained manner exhibiting slower release kinetics. They also exhibited an increase in insulin secretion when stimulated by the cocktail of nutrient secretagogues (glucose and meat hydrolysate) versus stimulating with only glucose. The cells transduced with the adenovirus containing an additional cytomegalovirus (CMV) promoter and green fluorescent protein (GFP) exhibited the highest insulin secretion after stimulation, whereas the cells transduced with an adenovirus encoding for destabilized preproinsulin mRNA exhibited the lowest secretion rates. The recombinant intestinal cell line (GLUTag-INS) secreted insulin with rapid kinetics upon stimulation, apparently due to the presence of secretory granules containing pre-synthesized insulin. The experiments demonstrated that the cells stimulated with medium containing only meat hydrolysate exhibited a significantly higher insulin secretion relative to secretagogue-free controls. The insulin secretion was not further enhanced when meat hydrolysate was combined with glucose.
59

Role of nitric oxide and viral products in pancreatic B-cell dysfunction and death / Role of nitric oxide and viral products in pancreatic beta-cell dysfunction and death

Liu, Dongbo 05 March 2004 (has links)
SUMMARY<p><p>Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by progressive destruction of insulin-producing pancreatic beta-cells. Both viral infections and the cytokines interleukin-1beta (IL-1beta) and interferon-gamma (IFN-gamma) have been suggested as potential mediators of beta-cell death in early T1DM. Nitric oxide (NO) is a highly diffusible, short-lived free radical gas, which plays a significant role in several physiological processes in a diversity of tissues and organisms. Prolonged exposure of rodent or human pancreatic beta-cells to combinations of cytokines induces the expression of the inducible form of nitric oxide synthase (iNOS) and Fas, NO production, and cell death. It also induces the expression of potential "defense" genes, such as manganese superoxide dismutase (MnSOD) and heat shock protein (hsp) 70. Recent studies have shown that NO, in addition to having cytotoxic actions, may also regulate gene transcription. It remains unclear whether NO mediates cytokine-induced gene expression and subsequent beta-cell death. Previous studies using NO synthase blockers yielded conflicting results, which may be due to non-specific effects of these agents. <p>In the first part of our work, we examined the role of NO in beta-cell dysfunction and death by using an iNOS knockout mice (iNOS-/-, background C57BL/6x129SvEv). We evaluated the effects of cytokines on gene expression, as determined by reverse transcriptase-polymerase chain reaction (RT-PCR), and viability, as determined by nuclear dyes, of pancreatic islet cells or fluorescence-activated cell sorter (FACS)-purified beta-cells isolated from iNOS knockout mice or their respective controls (C57BL/6x129SvEv). The combination of cytokines used was interleukin-1beta (50 U/ml) + gamma-interferon (1000 U/ml) + tumor necrosis factor-alpha (1000 U/ml). The lack of cytokine-induced iNOS activity in the iNOS-/- islet cells was confirmed by RT-PCR and nitrite determination. Cytokines induced a > 3-fold increase in Fas and MnSOD mRNA expression in wild-type (wt) and iNOS-/- islets. On the other hand, hsp 70 was induced in wt but not in iNOS-/- islets. Prolonged (6-9 days) exposure of wt islets to cytokines lead to an 80-90% decrease in islet cell viability, whereas viability decreased by only 10-30% in iNOS-/- islet cells. To determine the mode of cytokine-induced cell death, FACS-purified beta-cells were exposed to the same cytokines. After 9 days, the apoptosis index was similarly increased in wt (39 +/- 3%) and iNOS-/- (33 +/- 4 %) beta-cells. On the other hand, cytokines increased necrosis in wt (20 +/- 4 %) but not in iNOS-/- (7 +/- 3 %) beta-cells. From these data, we conclude that: 1) NO is required for cytokine-induced hsp 70 mRNA expression, but not for Fas and MnSOD expression; 2) cytokines induce both apoptosis and necrosis in mouse beta-cells; 3) cytokine-induced apoptosis is mostly NO-independent, whereas necrosis requires NO formation.<p>In the second part of our work, we examined the role of the viral product double-stranded RNA (dsRNA) in beta-cell dysfunction and death. DsRNA is produced by many viruses during their replicative cycle. We investigated whether dsRNA (here utilized as synthetic poly IC (PIC)) modifies the effects of IL-1beta and IFN-gamma on gene expression and viability of rat pancreatic beta-cells and the role of NO in this process. FACS-purified rat beta-cells were exposed for 6-16 h (study of gene expression by RT-PCR) or 6-9 days (study of viability by nuclear dyes) to PIC and/or IL-1beta or IFN-gamma. PIC increased the expression of Fas and Mn superoxide dismutase mRNAs by 5-10-fold. IL-1beta and a combination of PIC + IFN-gamma& / Doctorat en sciences biomédicales / info:eu-repo/semantics/nonPublished
60

GLP-1 receptor agonist exendin-4 improves glycemic control through beta cell and non-beta cell mechanism. / CUHK electronic theses & dissertations collection

January 2011 (has links)
Fan, Rongrong. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 130-150). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.

Page generated in 0.1206 seconds