• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 121
  • 31
  • 21
  • 15
  • 12
  • 9
  • 9
  • 7
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 280
  • 280
  • 33
  • 27
  • 26
  • 24
  • 24
  • 23
  • 23
  • 19
  • 18
  • 17
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Systemic and mucosal immunity in patients with periampullary cancer, obstructive jaundice and chronic pancreatitis

Darwish, Ammar January 2014 (has links)
Introduction: Derangement of systemic and mucosal immunity, which are the integral components of the immune system, increases the risk of septic complications in patients postoperatively. The aims of this study were to investigate the integrity of systemic immunity as well as the mucosal immune system in patients with pancreatic cancer (PC), chronic pancreatitis (CP) and obstructive jaundice (OJ).Method: Healthy controls, as well as four groups of patients were studied. These included; jaundiced patients with PC, jaundiced patients secondary to benign disease (choledocholithiasis), non-jaundiced patients with PC and non-jaundiced patients with CP. The study evaluated the nutritional status including anthropometric measurements and the serum proteins: retinal binding protein (RBP), transferrin (TRF) and prealbumin (PALB). This study also evaluated systemic immunity in terms of total lymphocyte count, lymphocyte subsets (CD4+, CD8+, CD25+and CD56+), tumour necrosis factor alpha (TNF- alpha), interleukin-1alpha (IL-1 alpha) and complement components; and mucosal immunity in terms of CD3+, CD4+, CD8+, CD20+, CD57+, CD68+ and mast cells. Results: 78 patients were recruited (including 39 males) as follows: normal controls (n=17), benign OJ (n=9), patients with PC with jaundice (n=23), non-jaundiced patients with PC (n=20) and CP (n=9). Circulating CD25+ and CD4+ were significantly lower in the PC group whereas CD8+ showed increased levels in the same patients with a significant decrease in OJ patients when compared with controls. Circulating CD56+ showed no statistically significant difference between all four groups. In addition, IL-1 and TNF-alpha showed no statistically significant difference in all groups when compared with the control group. Also, C3 and CH50 showed significantly raised levels in PC with jaundice when compared with the control group. On the other hand mucosal lymphocyte subsets showed no statistically significant difference among all groups in comparison with the control group. As for prealbumin and transferrin, both showed significantly low levels in OJ, PC with jaundice and with PC when compared to healthy controls. Survival analysis for both PC groups was carried out and showed no difference in terms of age, however PC patients who survived over 13 months showed increased levels of prealbumin as well as low levels of CH50.Conclusion: Patients with PC both with and without jaundice showed some signs of altered and dysfunctional systemic immunity as well as a reduction in serum proteins. These findings may have implications on the disease progression and postoperative complications. This may warrant therapeutic interventions to restore nutrition and improve immunity before major surgical intervention is planned which could result in improving prognosis.
42

Identificação e anotação funcional de novos transcritos com expressão alterada no câncer pancreático / Identification and functional annotation of novel transcripts with altered expression in pancreatic cancer

Sosa, Omar Julio 27 February 2019 (has links)
Neste estudo foi implementado um pipeline bioinformático para processar e analisar dados de RNA-Seq total e fita-específico gerados em nosso laboratório a partir de amostras pareadas de tumor e tecido adjacente não tumoral de 14 pacientes com o objetivo de catalogar com alta-resolução a composição e alterações no transcritoma no PDAC incluindo genes codificadores e não codificadores de proteína. / In the present work, we applied a bioinformatic pipeline to process and analyse data from total RNA-seq strand-oriented generated in our laboratory from matched samples of tumor and non-tumor adjacent pancreatic tissue from 14 patients with the goal of generate a high resolution catalog of the composition and the alterations in the transcriptome of PDAC, including protein coding and non coding genes.
43

The Health Impact of Pesticide Exposure in a Cohort of Outdoor Workers

Beard, John Roland January 2002 (has links)
This thesis describes a study undertaken between 1992 and 2001 to explore the possible health impacts of human exposure to pesticides. The study followed the health outcomes of approximately 4000 outdoor workers over a period of up to sixty-one years. These workers comprised two subcohorts of approximately even size, one composed of agricultural workers with high insecticide exposures, and the other made up of outdoor staff from local councils in the same area with little or no occupational exposure to insecticides. Mortality and morbidity were compared between the two groups, and with the general Australian community. The study identifies significantly increased mortality among both exposed and control subjects when compared to the Australian population. The major cause of this increase was mortality from smoking related diseases. The study also identifies significant increases in mortality among exposed subjects for a number of conditions that do not appear to be the result of smoking patterns, both when compared to the control group and the Australian population. These include pancreatic cancer in some DDT exposed subjects and asthma, diabetes, and leukaemia in subjects working with more modern chemicals. There was also an increase in self reported chronic illness and asthma, and lower neuropsychological functioning scores among surviving exposed subjects when compared to controls. Diabetes was also reported more commonly by subjects reporting occupational use of herbicides.
44

Mechanism Based Anticancer Drugs that Degrade Sp Transcription Factors

Chadalapaka, Gayathri 14 March 2013 (has links)
Curcumin is the active component of tumeric, and this polyphenolic compound has been extensively investigated as an anticancer drug that modulates multiple pathways and genes. We demonstrated that curcumin inhibited 253JB-V and KU7 bladder cancer cell growth, and this was accompanied by induction of apoptosis and decreased expression of the proapoptotic protein survivin and the angiogenic proteins vascular endothelial growth factor (VEGF) and VEGF receptor 1 (VEGFR1). Since expression of survivin, VEGF and VEGFR1 are dependent on specificity protein (Sp) transcription factors, we also investigated the effects of curcumin on downregulation of Sp protein expression as an underlying mechanism for the apoptotic and antiangiogenic activity of this compound. Curcumin decreases expression of Sp1, Sp3 and Sp4 in blader cancer cells indicating that the cancer chemotherapeutic activity of curcumin is due, in part, to decreased expression of Sp transcription factors and Sp-dependent genes. Betulinic acid (BA) and curcumin are phytochemical anticancer agents, and we hypothesized that both compounds decrease EGFR expression in bladder cancer through downregulation of specificity protein (Sp) transcription factors. BA and curcumin decreased expression of EGFR, Sp1, Sp3, Sp4 and Sp-dependent proteins in 253JB-V and KU7 cells; EGFR was also decreased in cells transfected with a cocktail (iSp) containing small inhibitory RNAs for Sp1, Sp3 and Sp4 showing that EGFR is an Sp-regulated gene. Methyl 2-cyano-3,11-dioxo-18?-olean-1,12- dien-30-oate (CDODA-Me) is a synthetic triterpenoid derived from glycyrrhetinic acid which inhibits proliferation of KU7 and 253JB-V bladder cancer cells. CDODA-Me also decreased expression of specificity protein-1 (Sp1), Sp3 and Sp4 transcription factors. Similar results were observed for a structurally-related triterpenoid, methyl 2-cyano-3,12-dioxooleana-1,9-dien-28-oate (CDDO-Me), which is currently in clinical trials for treatment of leukemia. Celastrol, a naturally occurring triterpenoid acid from an ivy-like vine exhibits anticancer activity against bladder cancer cells. Celastrol decreased cell proliferation, induced apoptosis and decreased expression of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and several Sp-dependent genes like Fibroblast growth factor receptor 3 (FGFR3). In vivo studies using KU7 cells as xenografts showed that celastrol represents novel class of anticancer drugs that acts, in part, through targeting downregulation of Sp transcription factors.
45

Role of transporters in pancreatic cancer drug resistance

Lo, Maisie K. Y. 05 1900 (has links)
Pancreatic cancer (PC) is known to be highly resistant to chemotherapy. Transporters, which regulate the influx and efflux of substrates across the plasma membrane, may play a role in PC drug resistance. ABC transporters are a large family of transmembrane proteins with diverse physiological functions, several of which play major roles in cancer drug resistance. Given that 90% of PC express a mutant K-ras oncogene and that PC are highly hypoxic, I postulated that constitutive K-ras activation and/or hypoxia may correlate with ABC transporter expression, which in turn may promote drug resistance in PC. Using normal and PC cell lines either overexpressing mutant K-ras or subjected to hypoxic treatment, mRNA expression was profiled for 48 ABC transporters. My findings indicate that expression of mutant K-ras and hypoxic treatment, as well as long-term exposure to chemotherapy, may contribute to the development of drug resistance in PC cells in part by inducing the expression of ABC transporters. Similar to ABC transporters, I investigated whether amino acid transporters would mediate drug resistance in PC. The xc" amino acid transporter (xc") mediates cellular uptake of cystine for the biosynthesis of glutathione, a major detoxifying agent. Because the xc" has been regulates the growth of various cancer cell types, and x," is expressed in the pancreas, I postulated that the xc" may be involved in growth and drug resistance in PC. The xc" transporter is differentially expressed in normal pancreatic tissues and is overexpressed in PC in vivo. UsingPC cell lines, I found that cystine uptake via the N.: was required for growth and survival in response to oxidative stress, and that expression of the xc" correlated with gemcitabine resistance. Accordingly, inhibition of xc" expression via siRNA reduced PC cell proliferation and restored sensitivity to gemcitabine. I also identified the anti-inflammatory drug sulfasalazine as a mixed inhibitor of the x,-, which acts to inhibit cell proliferation via reducing xc" activity and not by reducing NFKB activity. My findings thus indicate that the xc" plays a role in PC growth in part by contributing to glutathione synthesis to promote PC cell proliferation, survival, and drug resistance.
46

Functional Analysis of Trefoil Factors 1 and 3 in Tumorigenesis

Radiloff, Daniel Ray January 2009 (has links)
<p>Abstract</p><p>The trefoil factor family of secreted proteins contains three members; trefoil factor 1 or TFF1, trefoil factor 2 or TFF2, and trefoil factor 3 or TFF3. These three proteins share a conserved 42-43 amino acid domain containing 6 cysteine residues resulting in three disulfide bonds that holds the protein in a characteristic three-loop or "trefoil structure" known as the P domain. TFF1 is primarily localized to the stomach and secreted by the gastric mucosa while TFF2 and TFF3 are primarily localized to the colon and duodenum and secreted by the goblet cells. All three of these proteins play a protective role in the gastrointestinal tract where they are normally localized and have been identified as possible tumor suppressors, however, these proteins are also upregulated in cancer within tissues where they are not normally expressed including the breast, pancreas, prostate, and liver. The mechanisms by which two of these factors, TFF1 and TFF3, promote tumorigenesis remain largely undefined. In this dissertation we will attempt to elucidate these mechanisms as well as the regulation of these two proteins in both pancreatic and prostate cancer. Many of the underlying genetic and molecular mechanisms involved in the development of both pancreatic and prostate cancer remain largely unknown and as a result, therapeutic and diagnostic tools for treating these diseases are not as effective as they could be. By deciphering the role of TFF1 and TFF3 in these cancers, they could potentially serve as new therapeutic targets or biomarkers for treating both diseases.</p><p>Chapter 2 of this dissertation will examine the functional role of TFF1 promoting tumorigenesis in pancreatic and prostate cancer. We will show that TFF1 expression is critical for the viability of both pancreatic and prostate cancer cells and that reduction of TFF1 expression in these cells results in decreased tumorigenicity when implanted in immunocompromised mice. It will also be demonstrated that TFF1's function in promoting tumorigenicity is its ability to assist tumor cells overcome the tumor suppressive barrier of senescence. Thirdly, we show that the form of senescence that TFF1 assists in allowing the cells overcome is oncogene-induced senescence (OIS). Lastly, a cell cycle array identifies the potential downstream target p21CIP, a cyclin-dependent kinase inhibitor and OIS marker, whose expression is induced by loss of TFF1 expression.</p><p>In Chapter 3 of this work, we examine the role of another trefoil factor family member, TFF3, and its role in promoting prostate tumorigenesis. Just as with TFF1, it appears that TFF3 3 expression is critical for prostate cancer cell viability and tumorigenicity using the same experimental techniques used in Chapter 2. Using a genetically defined model of prostate cancer, a PI3-kinase-dependent regulatory mechanism of TFF3 emerges in this prostate cancer context. Using this system we begin to see a divergence in both regulation and function of TFF1 and TFF3 in prostate cancer. Finally, a mouse model expressing TFF3 was developed to monitor the histopthological changes associated with expression of this protein. Initial characterization of this model suggests a hyperplastic phenotype coinciding with TFF3 expression in the prostate.</p><p>The two studies in this dissertation establish a role of TFF1 and TFF3 in both prostate and pancreatic tumorigenesis and demonstrate that ablation of expression of both proteins is a potent inhibitor of tumorigenesis. With this knowledge, it is possible that TFF1 and TFF3 may become a potential therapeutic target or diagnostic marker for better treatment of prostate and pancreatic cancer.</p> / Dissertation
47

Molecular determinants for the outcome in gemcitabine-treated pancreatic cancer

Lüske, Claudia 26 November 2015 (has links)
No description available.
48

Nanosystems for combined therapy and imaging of pancreatic cancer

Homan, Kimberly Ann 24 January 2011 (has links)
Pancreatic cancer remains a major unsolved health problem, with conventional cancer treatments having little impact on disease course. The objective of this thesis is to create innovative tools to better understand and improve chemotherapeutic treatment of pancreatic cancer. Towards this end, nanosystems were designed with a dual purpose: to carry chemotherapeutic drugs and act as photoacoustic imaging contrast agents. The overarching hypothesis is that these nanosystems can provide enhanced therapy for pancreatic cancer and enable visualization of drug delivery. Demonstrated in this dissertation is the design, synthesis, and characterization of two such nanosystems built to carry the chemotherapeutic agent gemcitabine while acting as a photoacoustic imaging contrast agent. The nanosystems were also shown to be multifunctional with possible application as photothermal therapy agents and cellular functional sensors. Although future research is required to fully investigate the clinical potential of these systems for pancreatic cancer, the work presented in this dissertation is a step towards creation of multifunctional nanosystems that will enable non-invasive, in vivo photoacoustic imaging of drug delivery. / text
49

Energy balance, inflammation, and tumor progression : the role of NF-[kappa]B

Harvey, Alison Elise 16 June 2011 (has links)
Obesity is an established risk and progression factor for many types of cancer, including pancreatic and colon cancer, and is characterized by abnormal metabolic hormone production and a chronic low-grade state of inflammation. However, the links between obesity, hormones, inflammation and tumorigenesis in colon and pancreatic tissue are poorly understood. Calorie restriction (CR), an anti-obesity dietary regimen with potent anticancer effects, reduces serum metabolic hormones and protumorigenic cytokines. Insulin-like growth factor (IGF)-1 is a metabolic hormone that activates NF-[kappa]B, a key regulator of inflammation. NF-[kappa]B is a transcription factor that mediates transcription of many cancer- and inflammation-related genes and is upregulated in both colon and pancreatic cancer. We hypothesized that CR inhibits colon and pancreatic tumor cell growth through modulation of hormone-stimulated NF-[kappa]B activation and protumorigenic gene expression. To test this hypothesis, we used CR and ad libitum feeding to generate a lean and overweight (control) phenotype, respectively; in C57BL/6 mice transplanted with MC38 colon cancer cells or Panc 02 pancreatic cancer cells, and analyzed the effect of diet on circulating hormone levels, markers of inflammation, and tumor growth. We also investigated the in vitro effects of IGF-1 on NF-[kappa]B activation and downstream protumorigenic gene expression in MC38 and Panc 02 cells. CR, relative to control diet, reduced body weight, circulating IGF-1 levels, and transplanted MC38 and Panc 02 tumor growth, as well as protumorigenic gene expression in the MC38 and Panc 02 tumor microenvironment. IGF-1 increased cell viability, NF-[kappa]B nuclear translocation and DNA binding, transcriptional activation, and downstream gene expression of inflammation and other protumorigenic genes in MC38 colon cancer cells and Panc 02 pancreatic cancer cells in vitro. Knockdown studies of NF-[kappa]B in Panc 02 cells using si-RNA established that the IGF-1-induced increase in protumorigenic gene expression is mediated, at least partially, through an NF-[kappa]B-dependent mechanism. In conclusion, these findings in models of pancreatic and colon cancer help clarify the links between obesity, IGF-1, NF-[kappa]B-mediated inflammation, and cancer. This work provides the underpinnings for several new molecular targets and strategies to test in model systems and translational studies for preventing or controlling obesity-related cancer. / text
50

Near-infrared narrowband imaging of tumors using gold nanoparticles

Puvanakrishnan, Priyaveena 27 January 2012 (has links)
A significant challenge in the surgical resection of tumors is accurate identification of tumor margins. Current methods for margin detection are time-intensive and often result in incomplete tumor excision and recurrence of disease. The objective of this project was to develop a near-infrared narrowband imaging (NIR NBI) system to image tumor and its margins in real-time during surgery utilizing the contrast provided by gold nanoparticles (GNPs). NIR NBI images narrow wavelength bands to enhance contrast from plasmonic particles in a widefield, portable and non-contact device that is clinically compatible for real-time tumor margin demarcation. GNPs have recently gained significant traction as nanovectors for combined imaging and photothermal therapy of tumors. Delivered systemically, GNPs preferentially accumulate at the tumor site via the enhanced permeability and retention effect, and when irradiated with NIR light, produce sufficient heat to treat tumor tissue. The NIR NBI system consists of 1) two LED's: green (530 nm) and NIR (780 nm) LED for illuminating the blood vessels and GNP, respectively, 2) a filter wheel for wavelength selection, and 3) a CCD to collect reflected light from the sample. The NIR NBI system acquires and processes images at a rate of at least 6 frames per second. We have developed custom control software with a graphical user interface that handles both image acquisition and processing/display in real-time. We used mice with a subcutaneous tumor xenograft model that received intravenous administration and topical administration of gold nanoshells and gold nanorods. We determined the GNP's distribution and accumulation pattern within tumors using NIR NBI. Ex vivo NIR NBI of tumor xenografts accumulated with GNPs delivered systemically, demonstrated a highly heterogeneous distribution of GNP within the tumor with higher accumulation at the cortex. GNPs were observed in unique patterns surrounding the perivascular region. The GNPs clearly defined the tumor while surrounding normal tissue did not indicate the presence of particles. In addition, we present results from NBI of tumors that received topical delivery of conjugated GNPs. We determined that tumor labeling using topical delivery approach resulted in a more homogenous distribution of GNPs compared to the systemic delivery approach. Finally, we present results from the on-going in vivo tumor margin imaging studies using NIR NBI. Our results demonstrate the feasibility of NIR NBI in demarcating tumor margins during surgical resection and potentially guiding photo-thermal ablation of tumors. / text

Page generated in 0.0807 seconds