• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploring Galvanic Replacement as a Method to Engineer Peroxidase-mimics Nanoparticles

MaGloire, Kuryn T 01 January 2019 (has links)
Peroxidase enzymes are of critical importance within the scientific community for their applications in biosensing assays. In a living system, natural peroxidases function as catalysts in the oxidation of peroxide (e.g., H2O2) - a harmful byproduct of aerobic processes and convert them into harmless compounds. Such an ability allows peroxidases to serve as labels in biosensing assays, where they are conjugated to antibodies and accurately produce a detection signal by catalyzing substrates. However, due to intrinsic limitations, namely instability, Peroxidase made of proteins substantially inhibit broader applications. Alternatively, nanoparticles produced from noble metals have been found to exhibit peroxidase-like abilities and, therefore, can be used as synthetic enzymes with the potential to replace their natural counterparts. Given that the stability of most peroxidase mimics is already much better than their natural counterparts, in this field, the principal challenge has been creating substantial improvements to the catalytic efficiency of the mimics. This study sought to create a cage-like nanostructure ( denoted as nanocages) consisting of two platinum group metals. This experiment uses Galvanic replacement as a mechanism to hollow all Nanocages formed. Galvanic replacement has been primarily demonstrated using coinage metals ( Ex. Ag and Au). This experiment seeks to show that this process is viable for other Nobel metals, as well. In particular, palladium cubes were used as scaffolds or sacrificed templates to induce the reaction with a precursor containing a secondary Nobel metal (Platinum, Rhodium, or Ruthenium). Once viable samples where produced and checked via TEM ( Transmission Electron microscope), the peroxidase-like activity was compared to the activity of a non-hollowed nanostructure of the same material composition using TMB colorimetric assay.
2

Nanosystems for combined therapy and imaging of pancreatic cancer

Homan, Kimberly Ann 24 January 2011 (has links)
Pancreatic cancer remains a major unsolved health problem, with conventional cancer treatments having little impact on disease course. The objective of this thesis is to create innovative tools to better understand and improve chemotherapeutic treatment of pancreatic cancer. Towards this end, nanosystems were designed with a dual purpose: to carry chemotherapeutic drugs and act as photoacoustic imaging contrast agents. The overarching hypothesis is that these nanosystems can provide enhanced therapy for pancreatic cancer and enable visualization of drug delivery. Demonstrated in this dissertation is the design, synthesis, and characterization of two such nanosystems built to carry the chemotherapeutic agent gemcitabine while acting as a photoacoustic imaging contrast agent. The nanosystems were also shown to be multifunctional with possible application as photothermal therapy agents and cellular functional sensors. Although future research is required to fully investigate the clinical potential of these systems for pancreatic cancer, the work presented in this dissertation is a step towards creation of multifunctional nanosystems that will enable non-invasive, in vivo photoacoustic imaging of drug delivery. / text
3

Poly(lactide)-containing Multifunctional Nanoparticles: Synthesis, Domain-selective Degradation and Therapeutic Applicability

Samarajeewa, Sandani 02 October 2013 (has links)
Construction of nanoassemblies from degradable components is desired for packaging and controlled release of active therapeutics, and eventual biodegradability in vivo. In this study, shell crosslinked micelles composed of biodegradable poly(lactide) (PLA) core were prepared by the self-assembly of an amphiphilic diblock copolymer synthesized by a combination of ring opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. Enzymatic degradation of the PLA cores of the nanoparticles was achieved upon the addition of proteinase K (PK). Kinetic analyses and comparison of the properties of the nanomaterials as a function of degradation extent will be discussed. Building upon our findings from selective-excavation of the PLA core, enzyme- and redox-responsive nanoparticles were constructed for the encapsulation and stimuli-responsive release of an antitumor drug. This potent chemotherapeutic, otherwise poorly soluble in water was dispersed into aqueous solution by the supramolecular co-assembly with an amphiphilic block copolymer, and the release from within the core of these nanoparticles were gated by crosslinking the hydrophilic shell region with a reduction-responsive crosslinker. Enzyme- and reduction-triggered release behavior of the antitumor drug was demonstrated along with their remarkably high in vitro efficacy. As cationic nanoparticles are a promising class of transfection agents for nucleic acid delivery, in the next part of the study, synthetic methodologies were developed for the conversion of the negatively-charged shell of the enzymatically-degradable shell crosslinked micelles to positively-charged cationic nanoparticles for the complexation of nucleic acids. These degradable cationic nanoparticles were found to efficiently deliver and transfect plasmid DNA in vitro. The hydrolysis of the PLA core and crosslinkers of the nanocarriers may provide a mechanism for their programmed disassembly within endosomes, which would in-turn promote endosomal disruption by osmotic swelling, and release of active therapeutics from the polymeric assemblies. In the last part, a comparative degradation study was performed between the anionic and cationic micellar assemblies in the presence of two model enzymes, and electrostatic interaction-mediated preferential hydrolysis was demonstrated between the oppositely-charged enzyme-micelle pairs. These findings may be of potential significance toward the design of charge-mediated enzyme-responsive nanomaterials that are capable of undergoing environmentally-triggered therapeutic release, disassembly or morphological alterations under selective enzyme conditions.
4

Structures, Stabilities and Electronic Properties of Endo- and Exohedral Dodecahedral Silsesquioxane (T <sub>12</sub>-POSS) Nanosized Complexes with Atomic and Ionic Species

Hossain, Delwar, Hagelberg, Frank, Saebo, Svein, Pittman, Charles U. 04 May 2010 (has links)
The structures of endohedral complexes of the polyhedral oligomeric silsesquioxane (POSS) cage molecule (HSiO 3/2) 12, with both D 2d and D 6h starting cage symmetries, containing the atomic or ionic species: Li 0, Li +, Li -, Na 0, Na +, Na -, K 0, K +, K -, F -, Cl -, Br -, He, Ne, Ar were optimized by density functional theory using B3LYP and the 6-311G(d,p) and 6-311 ++G(2d,2p) basis sets. The exohedral Li +, Na +, K +, K -, F -, Cl -, Br -, He, Ne, Ar complexes, were also optimized. The properties of these complexes depend on the nature of the species encapsulated in, or bound to, the (HSiO 3/2) 12 cage. Noble gas (He, Ne and Ar) encapsulation in (HSiO 3/2) 12 has almost no effect on the cage geometry. Alkali metal cation encapsulation, in contrast, exhibits attractive interactions with cage oxygen atoms, leading to cage shrinkage. Halide ion encapsulation expands the cage. The endohedral X@(HSiO 3/2) 12 (X = Li +, Na +, K +, F -, Cl -, Br -, He and Ne) complexes form exothermically from the isolated species. The very low ionization potentials of endohedral Li 0, Na 0, K 0 complexes suggest that they behave like "superalkalis". Several endohedral complexes with small guests appear to be viable synthetic targets. The D 2d symmetry of the empty cage was the minimum energy structure in accord with experiment. An exohedral fluoride penetrates the D 6h cage to form the endohedral complex without a barrier.
5

Ingénierie de particules et assemblages à l’échelle colloïdale / Engineering particles and assemblies at colloidal scale

Hubert, Céline 26 October 2016 (has links)
La synthèse et l’assemblage de particules colloïdales de morphologie et de fonctionnalité originale permet d’envisager la fabrication de matériaux aux propriétés électromagnétiques innovantes. Au cours de ce travail, nous nous sommes intéressés à la synthèse de colloïdes hybrides silice/polystyrène par un processus de polymérisation en émulsion du styrène ensemencé par des germes de silice préalablement fonctionnalisés en surface par des groupements méthacrylate. Ces particules hybrides, composées d’une particule centrale de silice entourée d’un nombre contrôlé de nodules de polystyrène, ont été utilisées comme moules afin de synthétiser des nanocages d’or de morphologie contrôlée. Ces nanocages d’or ont été caractérisées structuralement et optiquement. Nous nous sommes également intéressés à l’assemblage des particules hybrides silice/polystyrène via la génération d’interactions entre les nodules de polystyrène grâce au contrôle de qualité du solvant pour le polystyrène. Les particules présentant un nodule de polystyrène s’assemblent en petits clusters alors que celles présentant deux nodules de polystyrène forment des chaînes. / The synthesis and the assembly of colloidal particles with original morphology and functionality should allow the fabrication of next-generation materials. This study deals with the synthesis of hybrid silica/polystyrene particles by an emulsion polymerization of styrenes eeded by surface functionalized silica particles. These particles, made by a silica coredecorated by a controlled number of polystyrene nodules, has been used as templates for thesynthesis of goldnanocages morphologically controlled. Theses gold nanocages has been characterized structurally and optically. We have also investigated the self-assembly of hybrid silica/polystyrene particles by generating interaction between polystyrene nodules due to the control of the solvent quality for polystyrene. Particles with one polystyrene nodule self assemble in little clusters and particle with two nodules in chains.
6

Nanopartículas de magnetita aplicadas no controle comutável da transferência de elétrons de proteínas redox e na construção de padrões de litografia magnética / Magnetite nanoparticles Applied in Switchable Control of Electron Transfer of Redox Proteins and to Construction of Magnetolithography patterns

Melo, Antônio Francisco Arcanjo de Araújo 17 November 2016 (has links)
Atualmente, aplicações de nanopartículas de magnetita (NPs-Fe3O4) têm sido comumente reportadas em inúmeros trabalhos descritos na literatura. Catálise, ferrofluidos e dispositivos de armazenamento de dados são algumas delas. Além disso, aplicações biomédicas têm sido demonstradas. Para esse último, têm-se os exemplos de magneto-hipertermia, liberação controlada de fármacos, agente de contraste em imagens de ressonância magnética e o controle de reações bioeletrocatalíticas envolvendo enzimas redox. Nesta tese, NPs-Fe3O4 foram aplicadas em duas vertentes inéditas. Dessa forma, tendo em vista uma melhor compreensão, a sua escrita foi dividida em dois capítulos, nos quais abordam separadamente cada uma dessas vertentes. O primeiro capítulo descreve a obtenção, modificação e funcionalização de NPs-Fe3O4 a afim de usá-las como uma plataforma para a imobilização do citocromo c (Cyt c); uma proteína redox de comportamento modelo dotada de um grupo prostético heme em sua estrutura terciária. Em seguida, após um efetivo processo de imobilização do Cyt c sobre as NPs-Fe3O4 com superfície modificada, o uso de um campo magnético externo possibilitou a deposição do mesmo na interface eletródica, estabelecendo a reação de transferência direta de elétrons entre o grupo heme e a superfície metálica do eletrodo de trabalho. Além disso, por meio da permuta entre os estados comutáveis switch on e switch off, obteve-se o controle magnético comutável da reação de transferência direta de elétrons do Cyt c quando imobilizado na superfície das NPs-Fe3O4 com superfície modificada. Já para o segundo capítulo, NPs-Fe3O4 foram utilizadas como adesivo magnético a fim de capturar nanoestruturas metálicas hollow (nanocages bimetálicos de Au/Ag) dispersas em suspensão aquosa. Dessa forma, por meio da influência de um campo magnético constante, os aglomerados formados entre esses dois nanomateriais foram depositados sobre uma máscara litográfica, levando a formação de padrões de litografia magnética dispostos sobre a superfície de um substrato de ITO (vidro recoberto com óxido de estanho dopado com índio). Imagens de microscopia eletrônica de varredura (MEV) comprovaram que a metodologia utilizada para o preparo dos padrões litográficos foi eficaz, apresentando um alto rendimento na obtenção dos mesmos. Além disso, realizou-se com sucesso o mapeamento químico de infravermelho dos padrões litográficos dispostos sobre o ITO. Para isso, empregou-se como alvo os modos vibracionais do polímero polivinilpirrolidona (PVP) utilizado na funcionalização dos nanocages bimetálicos de Au/Ag. Por fim, acredita-se que os padrões litográficos arranjados em macroescala, juntamente com os aglomerados de nanocages bimetálicos alinhados na forma de microfios, possuem potencial aplicação em estudos de espectroscopia de absorção no infravermelho intensificado por superfície (SEIRA). / Currently, applications of magnetite nanoparticles (Fe3O4-NPs) have been commonly reported in many studies in the literature. Catalysis, ferrofluids and data storage devices are some of them. Moreover, biomedical applications have been demonstrated. For the latter, there are the following examples, such as magneto-hyperthermia, controlled release of drugs and the control of bioelectrocatalysis of the enzymatic reactions. In this thesis, Fe3O4-NPs were used in two new applications. Therefore, towards a better understanding its writing was divided into two chapters, which each one of them reports separately these two applications. The first chapter describes the synthesis, modification and functionalization of Fe3O4-NPs in order to use them as a platform for the immobilization of cytochrome c (Cyt c); model redox protein which possess a heme prosthetic group in its tertiary structure. Then, after an effective immobilization of Cyt c on surface-modified Fe3O4-NPs, the use of an external magnetic field permitted the deposition of this redox protein on the electrode interface, establishing the reaction of direct electron transfer between heme prosthetic group and the metallic surface of the working electrode. Furthermore, by the exchange between ON and OFF switch modes was obtained the magnetic control of the direct electron transfer of Cyt c when immobilized on the surface-modified Fe3O4-NPs. For the second chapter, Fe3O4-NPs were used as magnetic adhesive to capture hollow metallic nanostructures (Au-Ag bimetallic nanocages) dispersed in aqueous suspension. Thus, by use of a constant magnetic field, the agglomerates formed between these two nanomaterials were deposited on a lithographic mask, leading to formation of magnetolithograph patterns on the surface of ITO substrate (glass coated with oxide tin-doped indium). Scanning electron microscopy images (SEM) showed that the methodology used for the high-yield preparation of lithographicpatterns was effective. Furthermore, the FTIR chemical mapping of the lithographic patterns arranged on the ITO\'s surface was successfully performed. For this, the CH2 and C-N, C=O vibrational modes of the polyvinylpyrrolidone polymer (PVP) used for the functionalization of Au-Ag bimetallic nanocages were employed as target. Finally, we believed that magnetolithograph patterns arranged in microscale on the ITO surface, and also the clusters of the bimetallic nanocages aligned as micro-wires show potential application in surface-enhanced infrared absorption (SEIRA).
7

Nanopartículas de magnetita aplicadas no controle comutável da transferência de elétrons de proteínas redox e na construção de padrões de litografia magnética / Magnetite nanoparticles Applied in Switchable Control of Electron Transfer of Redox Proteins and to Construction of Magnetolithography patterns

Antônio Francisco Arcanjo de Araújo Melo 17 November 2016 (has links)
Atualmente, aplicações de nanopartículas de magnetita (NPs-Fe3O4) têm sido comumente reportadas em inúmeros trabalhos descritos na literatura. Catálise, ferrofluidos e dispositivos de armazenamento de dados são algumas delas. Além disso, aplicações biomédicas têm sido demonstradas. Para esse último, têm-se os exemplos de magneto-hipertermia, liberação controlada de fármacos, agente de contraste em imagens de ressonância magnética e o controle de reações bioeletrocatalíticas envolvendo enzimas redox. Nesta tese, NPs-Fe3O4 foram aplicadas em duas vertentes inéditas. Dessa forma, tendo em vista uma melhor compreensão, a sua escrita foi dividida em dois capítulos, nos quais abordam separadamente cada uma dessas vertentes. O primeiro capítulo descreve a obtenção, modificação e funcionalização de NPs-Fe3O4 a afim de usá-las como uma plataforma para a imobilização do citocromo c (Cyt c); uma proteína redox de comportamento modelo dotada de um grupo prostético heme em sua estrutura terciária. Em seguida, após um efetivo processo de imobilização do Cyt c sobre as NPs-Fe3O4 com superfície modificada, o uso de um campo magnético externo possibilitou a deposição do mesmo na interface eletródica, estabelecendo a reação de transferência direta de elétrons entre o grupo heme e a superfície metálica do eletrodo de trabalho. Além disso, por meio da permuta entre os estados comutáveis switch on e switch off, obteve-se o controle magnético comutável da reação de transferência direta de elétrons do Cyt c quando imobilizado na superfície das NPs-Fe3O4 com superfície modificada. Já para o segundo capítulo, NPs-Fe3O4 foram utilizadas como adesivo magnético a fim de capturar nanoestruturas metálicas hollow (nanocages bimetálicos de Au/Ag) dispersas em suspensão aquosa. Dessa forma, por meio da influência de um campo magnético constante, os aglomerados formados entre esses dois nanomateriais foram depositados sobre uma máscara litográfica, levando a formação de padrões de litografia magnética dispostos sobre a superfície de um substrato de ITO (vidro recoberto com óxido de estanho dopado com índio). Imagens de microscopia eletrônica de varredura (MEV) comprovaram que a metodologia utilizada para o preparo dos padrões litográficos foi eficaz, apresentando um alto rendimento na obtenção dos mesmos. Além disso, realizou-se com sucesso o mapeamento químico de infravermelho dos padrões litográficos dispostos sobre o ITO. Para isso, empregou-se como alvo os modos vibracionais do polímero polivinilpirrolidona (PVP) utilizado na funcionalização dos nanocages bimetálicos de Au/Ag. Por fim, acredita-se que os padrões litográficos arranjados em macroescala, juntamente com os aglomerados de nanocages bimetálicos alinhados na forma de microfios, possuem potencial aplicação em estudos de espectroscopia de absorção no infravermelho intensificado por superfície (SEIRA). / Currently, applications of magnetite nanoparticles (Fe3O4-NPs) have been commonly reported in many studies in the literature. Catalysis, ferrofluids and data storage devices are some of them. Moreover, biomedical applications have been demonstrated. For the latter, there are the following examples, such as magneto-hyperthermia, controlled release of drugs and the control of bioelectrocatalysis of the enzymatic reactions. In this thesis, Fe3O4-NPs were used in two new applications. Therefore, towards a better understanding its writing was divided into two chapters, which each one of them reports separately these two applications. The first chapter describes the synthesis, modification and functionalization of Fe3O4-NPs in order to use them as a platform for the immobilization of cytochrome c (Cyt c); model redox protein which possess a heme prosthetic group in its tertiary structure. Then, after an effective immobilization of Cyt c on surface-modified Fe3O4-NPs, the use of an external magnetic field permitted the deposition of this redox protein on the electrode interface, establishing the reaction of direct electron transfer between heme prosthetic group and the metallic surface of the working electrode. Furthermore, by the exchange between ON and OFF switch modes was obtained the magnetic control of the direct electron transfer of Cyt c when immobilized on the surface-modified Fe3O4-NPs. For the second chapter, Fe3O4-NPs were used as magnetic adhesive to capture hollow metallic nanostructures (Au-Ag bimetallic nanocages) dispersed in aqueous suspension. Thus, by use of a constant magnetic field, the agglomerates formed between these two nanomaterials were deposited on a lithographic mask, leading to formation of magnetolithograph patterns on the surface of ITO substrate (glass coated with oxide tin-doped indium). Scanning electron microscopy images (SEM) showed that the methodology used for the high-yield preparation of lithographicpatterns was effective. Furthermore, the FTIR chemical mapping of the lithographic patterns arranged on the ITO\'s surface was successfully performed. For this, the CH2 and C-N, C=O vibrational modes of the polyvinylpyrrolidone polymer (PVP) used for the functionalization of Au-Ag bimetallic nanocages were employed as target. Finally, we believed that magnetolithograph patterns arranged in microscale on the ITO surface, and also the clusters of the bimetallic nanocages aligned as micro-wires show potential application in surface-enhanced infrared absorption (SEIRA).
8

Self-Assembled Coordination Cages for Catalysis and Proton Conduction

Samanta, Dipak January 2014 (has links) (PDF)
Biological systems construct varieties of self-assembled architectures with incredible elegance and precession utilizing proteins as subunits to accomplish widespread functions. Inspired by natural systems, construction of artificial model systems with such sophistication and delicacy has become an intriguing field of research over the last two decades using so-called self-assembly process. Judiciously selected complementary building units encoded with specific chemical and structural information can be self-assembled into pre-programmed abiological architectures in a manner similar to biological self-assembly. In this regard, kinetically labile metal-ligand coordination has become an efficient and powerful protocol for the construction of highly intricate structures with specific topology and functionality due to its simple design principle, high bond enthalpy, and predictable directionality. Two-component self-assembly is very widely used methodology and easy to monitor. Recently, multi-component self-assembly has come up as an alternative and effective pathway to achieve complex architectures connecting more than two components in a single step. However, formation of selective single product from multicomponents is entropically unfavorable. Only a very few 3D architectures have been known, that are obtained from a mixture of ditopic and tri- or tetratopic donors with metal acceptors with or without employing templates. Development of template-free multicomponent architectures is still in its infancy. Strong tendency of Pd(II)/Pt(II) to attain square-planar geometry around the metal center and kinetically labile nature of Pd(II)/Pd(II)-N(pyridine) bonds made them chemists’ favourite to engineer desired supramolecular coordination architectures with structural resemblance to Platonic or Archimedean solids by employing symmetrical pyridyl donors due to their predictable directionality. In case of poly-imidazole donors, free rotation of C-N bond connecting imidazole and phenyl ring allows various dispositions of the donating nitrogen with respect to the aromatic backbone, and therefore, the structural topology of the architectures, made of poly-imidazole ligands becomes much more interesting as compared to symmetrical Platonic or Archimedean solids. The physico-chemical properties of self-assembled coordination cages depend on the structures of the complexes. Presence of large internal cavity surrounded by aromatic core, provides an excellent environment for the encapsulation of varieties of guest molecule or as nano-reactors for different organic transformations. Structural investigation in terms of packing interactions, solvent molecules, intermolecular channels can sometimes determine the property of such self-assembled materials as well. Presence of acidic water as well as H-bonded 3D-networks of water molecules in molecular pockets make them potential material for proton conduction. In addition, metal-ligand coordination offers opportunity to introduce new functionality through pre-synthetic modification of the building constituents to influence the property of the supramolecular systems. Incorporation of unsaturated ethynyl functionality attached to the heavy transition metal is expected to exhibit efficient luminescence due to the facile metal to ligand charge transfer (MLCT). Hence, the final assemblies can be employed as chemosensors for electron-deficient nitroaromatics, which are the chemical signature of many of the commercially available explosives. The present investigation is focused on design and construction of discrete, nanoscopic coordination cages with unusual structural topology employing mainly imidazole-based donors with Pd(II)/Pt(II) acceptors and their applications in catalysis, chemosensing, and proton conduction. CHAPTER 1 of the thesis provides a general introduction to self-assembly focusing on the importance and advantages of metal-ligand directional bonding approach towards the construction of supramolecular architectures with various structural topologies. This chapter also includes a brief review on the applications of such coordination cages in various fields especially as ‘molecular flask’ for the observation of unique chemical phenomena and unusual reactions. Part A of CHAPTER 2 describes the synthesis of a new hollow Pd6 water soluble cage [{(tmen)Pd}6(timb)4](NO3)12 (1) via two-component self-assembly of a triimidazole donor and 90° Pd(II) acceptor [tmen = N,N,N’,N’-tetramethylethylenediamine, timb = 1,3,5-tris(1-imidazolyl)benzene]. The assembly was successfully crystallized with a hydrophilic dianionic benzoquinone derivative (formed in situ by the decomposition of DDQ) as [{(tmen)Pd}6(timb)4](NO3)10()2(H2O)18 (3), and a hydrophobic sterically demanding aromatic aldehyde as [{(tmen)Pd}6(timb)4](NO3)12{()4a}2(H2O)27 (5a) [where 2H2 = 2,3-dichloro-5,6-dihydroxycyclohexa-2,5diene-1,4-dione, 4a = 1-pyrenecarboxaldehyde,  = exohedral and  = endohedral] to confirm the hydrophobic nature of the cavity. Experiments were carried out to show that the hydrophobic confined nanospace of the cage (1) catalyses the Knoevenagel condensation of a series of different aromatic monoaldehydes with active methylene compounds in ‘green’ aqueous medium. The Knoevenagel condensation reaction is basically a dehydration reaction because water is a by-product. So the presence of water should, in principle, promote the backward reaction as per Le Chatelier’s principle. In general, these reactions with organic substrates are not performed in water. However, difficulty has been overcome using hydrophobic cavity of the cage. It has also been established that the cavity of the cage also enhances the rate of Diels-Alder reaction of 9-hydroxymethylanthracene with N-phenylmaleimide/N-cyclohexylmaleimide. Figure 1. Catalytic Knoevenagel condensation and Diels-Alder reaction using hydrophobic cavity of the cage (1) in aqueous medium. Part B of CHAPTER 2 reports unique three-component self-assembly incorporating both tri- and tetra-topic donors. Until now, a very few 3D-architectures have been known that are obtained from self-assembly of ditopic and tri- or tetratopic donors with metal acceptors. Scheme 1. Three-component self-assembly of a Pd7 cage (1) from cis-blocked Pd(II) 90° acceptor (M), tri-imidazole (timb) and tetra-imidazole (tim) donors. Self-assembled multicomponent discrete architecture composed of both tri- and tetra-topic donors is yet to be reported due to difficulty in prediction of the final structure from the mixture of ligands having multiple donor sites. The first example of self-sorted Pd7 molecular boat [{(tmen)Pd}7(timb)2(tim)2](NO3)14(H2O)20 (1) [tmen = N,N,N’,N’-tetramethylethylenediamine, timb = 1,3,5-tris(1-imidazolyl)-benzene, tim = 1,2,4,5-tetrakis(1-imidazolyl)benzene] was synthesized via three-component self-assembly of cis-(tmen)Pd(NO3)2, tetra- (tim) and tri-topic donors (timb) in a 7:2:2 ratio. The cavity of this cage was also utilized as a nanoreactor for catalytic Knoevenagel condensations of a series of aromatic aldehydes with 1,3-dimethylbarbituric acid (e) and Meldrum’s acid (f) in aqueous media. CHAPTER 3 presents the results of an investigation on how simple variation of length and coordination mode of linear donors can self-discriminate into markedly different complex architectures, from Pd8 molecular swing [{(tmen)Pd}8(tim)2(bpy)4](NO3)16 (1) or [{(tmen)Pd}8(tim)2(stt)5](NO3)6 (2) to Pd6 molecular boat [{(tmen)Pd}6(tim)2(bpe/dpe/pin/dpb)2](NO3)12, (3/4/5/6). Also by enhancing denticity [bidentate to tridentate (ptp)] as well as introducing asymmetry, they self-sort into Pd7 molecular tent [{(tmen)Pd}7(tim)2(ptp)2](NO3)14 (7) by employing it in a self-assembly of cis-(tmen)Pd(NO3)2 and tetraimidazole (tim) donor [where tmen = N,N,N’,N’-tetramethylethylenediamine, bpy = 4,4’-bipyridyl, stt = sodium terephthalate, bpe = trans-1,2-bis(4-pyridyl)ethylene, dpe = 1,2-di(pyridin-4-yl)ethane, pin = N-(pyridin-4-yl)isonicotinamide, dpb = 1,4-di(pyridin-4-yl)benzene, ptp = 6'-(pyridin-4-yl)-3,4':2',4''-terpyridine, and tim = 1,2,4,5-tetrakis(1- imidazolyl)benzene]. In these cases, control of the geometrical principles and stereo-electronic preferences of the building units allowed the formation of such intricate architectures. Some of these assemblies represent first examples of such types of structures, and their formation would not be anticipated by taking into account only the geometry of the donor and acceptor building units. In addition to their direct structural confirmation using single crystal X-ray diffraction analysis, propensity of the assemblies (1 and 3) to form inclusion complexes with large guest like C60 in solution was also demonstrated by fluorescence quenching experiment. The high KSV values for both the assemblies 1 (1.0 × 10-5 M-1) and 2 (1.6 × 10-6 M-1) with C60 indicated the propensity of these assemblies to form complexes with C60 in solution. Furthermore, inspection of crystal packing of other five complexes (2 and 4 - 7) revealed the presence of water molecules H-bonded with NO3– (O-H···O=N) and 3D H-bonded networks of water in the intermolecular pockets. Interestingly, the present complexes (2 and 4 - 7) show high conductivity across low-humidity range at ambient temperature and achieve a conductivity of ~10-3 Scm-1 at 75% relative humidity and 296 K. These supra-molecular architectures represent a new generation of discrete materials that display high proton conductivity under ambient conditions with activation energy comparable to that of Nafion. Scheme 2. Exclusive formation of Pd8 molecular swings (1 and 2), Pd6 molecular boats (3-6), and Pd7 molecular tent (7) via self-sorting. CHAPTER 4 presents self-selection by synergistic effect of morphological information and coordination ability of the ligands through specific coordination interactional algorithms within dynamic supramolecular systems involving a tetratopic Pd(II) acceptor and three different pyridine- and imidazole-based donors (La - Lc) [La = 1,3-bis((E)-2-(pyridin-3-yl)vinyl)benzene, Lb = 1,3-di(1H-imidazol-1-yl)benzene, and Lc = tris(4-(1H-imidazol-1-yl)phenyl)amine]. Three different cages, ‘paddle wheel’ cluster Pd2(La)4(NO3)4 (2a), molecular barrel Pd3(Lb)6(NO3)6 (2b) and molecular sphere Pd6(Lc)8(NO3)12 (2c) were first synthesized via two-component self-assembly of a tetratopic Pd(II) acceptor (1) and individual pyridine- and imidazole-based donors (La - Lc). When all the four components were allowed to interact in a complex reaction mixture, only one out of three cages was isolated. The inherent dynamic nature of the kinetically labile coordination bond allows constitutional adaptation through component exchange in the competition experiment involving multiple constituents to self-organize into specific combination and thereby, achieve the thermodynamically most stable assembly. The preferential binding affinity towards a particular partner was also established by transforming a non-preferred cage to a preferred cage by the interaction with the appropriate ligand and thus, this represents the first examples of two-step cage-to-cage transformation through constitutional evolution of Figure 2. Cage-to-cage transformation from non-preferred cage to preferred cage upon treatment with appropriate ligand; and Nyquist plots of the complexes (2b and 2c) under 98% RH condition and ambient temparature. dynamic systems induced by both coordination ability and geometry of the ligand. Moreover, computational study further supported the fact that coordination interaction of imidazole moiety to Pd(II) is enthalpically more preferred compared to pyridine which drives the selection process. In addition, analysis of crystal packing of both the complexes (2b and 2c) indicated the presence of strong H-bonds between NO3- and water molecules; as well as H-bonded 3D-networks of water. Interestingly, both the complexes exhibit promising proton conductivity (10-5 to ca. 10-3 S cm-1) at ambient temperature under relative humidity of ~98% with low activation energy. CHAPTER 5 covers design and synthesis of new organometallic building block 1,3,5-tris(4-trans-Pt(PEt3)2I(ethynyl)phenyl)benzene (1) incorporating Pt-ethynyl functionality and [2 + 3] self-assembly of its nitrate analogue 1,3,5-tris(4-trans-Pt(PEt3)2(ONO2)(ethynyl)phenyl)benzene (2) with “clip” type bidentate donors (L1 – L3) separately afforded three trigonal prismatic architectures (3a – 3c), respectively (Scheme 3), Scheme 3. Schematic presentation of three different donors (L1 – L3) and a new planar tritopic acceptor (2) and their [3 + 2] self-assembly into trigonal prismatic architectures (3a - 3c). [L1 = N1,N3-di(pyridin-3-yl)isophthalamide; L2 = 1,3-bis((E)-2-(pyridin-3-yl)vinyl)benzene; L3 = 1,3-bis(pyridin-3-ylethynyl)benzene]. All these prisms were characterized and their shapes/sizes are predicted through geometry optimization employing molecular mechanics universal force field (MMUFF) simulation. The extended -conjugation including the presence of Pt-ethynyl functionality make them electron rich as well as luminescent in nature. As expected, cages 3b and 3c exhibit fluorescent quenching in solution upon addition of picric acid [PA], which is a common constituent of many explosives. Interestingly, the non-responsive nature of fluorescent intensity towards other electron-deficient nitro-aromatic explosives (NAEs) makes them promising selective sensors for PA with a detection limit deep down to ppb. Complexes 3b – c represent the first examples of molecular metallocages as selective sensors for picric acid. Furthermore, solid-state quenching of fluorescent intensity of the thin film of 3b upon exposure to saturated vapor of picric acid draws special attention for infield application.

Page generated in 0.0348 seconds