• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The development dynamic models for a dense medium separation circuit in coal in beneficiation

Meyer, Ewald Jonathan 26 July 2010 (has links)
Dense medium separation (DMS) plants are typically used to beneficiate run-of-mine (ROM) coal in coal metallurgy. These plants normally make use of a dense medium cyclone as the primary processing unit. Because of the deviations in the ROM quality, the production yield and quality become difficult to maintain. A control system could benefit such operations to maintain and increase product throughput and quality. There are many different methods for developing a control system in a metallurgical operation; however, what is most fundamental is the use of a mathematical model to design a controller. For this reason, a first principle dynamic mathematical model has been developed for a DMS circuit. Each unit operation is modelled individually, then integrated together to form the complete system. The developed DMS circuit dynamic model is then used to simulate the process. It is also found that most models developed for DMS operations typically make use of steady-sate analysis and that very little literature is available on dynamic models of this kind. Difficulties that arise when validating a model in metallurgical processes are insufficient measurement points or the challenges in measuring certain variables, such as physical properties (e.g. particle size) or chemical components (e.g. ash percentage). This paper also explains how the Runge-Kutta approximation can be used in simulating DMS unit processes with intermediate online measurements that may be available. This can ultimately assist in verifying the accuracy of the simulation. One of the other problems that can occur when developing models from first principles is the estimation of model parameters. Specifically when non-linear state-space relationships are developed, one must ensure that there is a unique solution for the parameters in question. A method employing parameter identifiability is also presented in this dissertation to illustrate its use. In addition the process of estimating parameters is explained and illustrated. Copyright / Dissertation (MEng)--University of Pretoria, 2010. / Electrical, Electronic and Computer Engineering / unrestricted
2

On the identifiability of highly parameterised models of physical processes

Raman, Dhruva Venkita January 2016 (has links)
This thesis is concerned with drawing out high-level insight from otherwise complex mathematical models of physical processes. This is achieved through detailed analysis of model behaviour as constituent parameters are varied. A particular focus is the well-posedness of parameter estimation from noisy data, and its relationship to the parametric sensitivity properties of the model. Other topics investigated include the verification of model performance properties over large ranges of parameters, and the simplification of models based upon their response to parameter perturbation. Several methodologies are proposed, which account for various model classes. However, shared features of the models considered include nonlinearity, parameters with considerable scope for variability, and experimental data corrupted by significant measurement uncertainty. We begin by considering models described by systems of nonlinear ordinary differen- tial equations with parameter dependence. Model output, in this case, can only be obtained by numerical integration of the relevant equations. Therefore, assessment of model behaviour over tracts of parameter space is usually carried out by repeated model simulation over a grid of parameter values. We instead reformulate this as- sessment as an algebraic problem, using polynomial programming techniques. The result is an algorithm that produces parameter-dependent algebraic functions that are guaranteed to bound user-defined aspects of model behaviour over parameter space. We then consider more general classes of parameter-dependent model. A theoretical framework is constructed through which we can explore the duality between model sensitivity to non-local parameter perturbations, and the well-posedness of parameter estimation from significantly noisy data. This results in an algorithm that can uncover functional relations on parameter space over which model output is insensitive and parameters cannot be estimated. The methodology used derives from techniques of nonlinear optimal control. We use this algorithm to simplify benchmark models from the systems biology literature. Specifically, we uncover features such as fast-timescale subsystems and redundant model interactions, together with the sets of parameter values over which the features are valid. We finally consider parameter estimation in models that are acknowledged to im- perfectly describe the modelled process. We show that this invalidates standard statistical theory associated with uncertainty quantification of parameter estimates. Alternative theory that accounts for this situation is then developed, resulting in a computationally tractable approximation of the covariance of a parameter estimate with respect to noise-induced fluctuation of experimental data.
3

Analyses de sensibilité et d'identifiabilité globales : application à l'estimation de paramètres photophysiques en thérapie photodynamique / Global sensitivity and identifiability analyses : application to the estimation of the photophysical parameters in photodynamic therapy

Dobre, Simona 22 June 2010 (has links)
La thérapie photodynamique (PDT) est un traitement médical destiné à certains types de cancer. Elle utilise un agent photosensibilisant qui se concentre dans les tissus pathologiques est qui sera. Cet agent est ensuite activé par une lumière d'une longueur d'onde précise produisant, après une cascade de réactions, des espèces réactives de l'oxygène qui endommagent les cellules cancéreuses.Cette thèse aborde les analyses d'identifiabilité et de sensibilité des paramètres du modèle dynamique non linéaire retenu.Après avoir précisé différents cadres d'analyse d'identifiabilité, nous nous intéressons plus particulièrement à l'identifiabilité a posteriori, pour des conditions expérimentales fixées, puis à l'identifiabilité pratique, prenant en plus en compte les bruits de mesure. Pour ce dernier cadre, nous proposons une méthodologie d'analyse locale autour de valeurs particulières des paramètres. En ce qui concerne l'identifiabilité des paramètres du modèle dynamique de la phase photocytotoxique de la PDT, nous montrons que parmi les dix paramètres localement identifiables a posteriori, seulement l'un d'entre eux l'est en pratique. Néanmoins, ces résultats locaux demeurent insuffisants en raison des larges plages de variation possibles des paramètres du modèle et nécessitent d'être complétés par une analyse globale.Le manque de méthode visant à tester l'identifiabilité globale a posteriori ou pratique, nous a orientés vers l'analyse de sensibilité globale de la sortie du modèle par rapport à ses paramètres. Une méthode d'analyse de sensibilité globale fondée sur l'étude de la variance a permis de mettre en évidence trois paramètres sensibilisants.Nous abordons ensuite les liens entre les analyses globales d'identifiabilité et de sensibilité des paramètres, en employant une décomposition de Sobol'. Nous montrons alors que les liens suivants existent : une fonction de sensibilité totale nulle implique un paramètre non-identifiable; deux fonctions de sensibilité colinéaires impliquent la non-identifiabilité mutuelle des paramètres en question ; la non-injectivité de la sortie par rapport à un de ses paramètres peut aussi entrainer la non-identifiabilité du paramètre en question mais ce dernier point ne peut être détecté en analysant les fonctions de sensibilité uniquement. En somme, la détection des paramètres non globalement identifiables dans un cadre expérimental donné à partir de résultats d'analyse de sensibilité globale ne peut être que partielle. Elle permet d'observer deux (sensibilité nulle ou négligeable et sensibilités corrélées) des trois causes de la non-identifiabilité / Photodynamic therapy (PDT) is a treatment of dysplastic tissues such as cancers. Mainly, it involves the selective uptake and retention of the photosensitizing drug (photosensitizer, PS) in the tumor, followed by its illumination with light of appropriate wavelength. The PS activation is thought to produce, after multiple intermediate reactions, singlet oxygen at high doses (in the presence of molecular oxygen) and thereby to initiate apoptotic and necrotic death of tumor. The PDT efficiency stems from the optimal interaction between these three factors: photosensitizing agent (its chemical and photobiological properties), light (illumination conditions) and oxygen (its availability in the target tissue). The relative contribution of each of these factors has an impact on the effectiveness of treatment. It is a dynamic process and the objective of the thesis is to characterize it by a mathematical model. The points raised relate primarily to the determination of a dynamic model of the photodynamic phase (production of singulet oxygen), to the global analyses of identifiability and sensitivity of the parameters of the model thus built. The main difficulties of this work are the nonlinearity structure of the photophysical model, the large range of possible values (up to four decades) of the unknown parameters, the lack of information (only one measured variable over six state variables), the limited degrees-of-freedom for the choice of the laser light stimulus (input variable).Another issue concerns the links between the non-identifiability of parameters and the properties of global sensitivity functions. Two relationships between these two concepts are presented. We stress the need to remain cautious about the parameter identifiability conclusions based on the sensitivity study. In perspective, these results could lead to the development of new approaches to test the non-identifiability of parameters in an experimental framework
4

Estimation d'état, estimation paramétrique et identifiabilité des modèles quasi-LPV / State and parameter estimation, and identi ability of quasi-LPV models

Srinivasarengan, Krishnan 28 June 2018 (has links)
Dans cette thèse, deux problèmes liés aux approches basées sur des modèles pour le diagnostic de défauts et l'estimation du niveau de dégradation des équipements dans un bâtiment sont étudiés: la conception d'observateurs adaptatifs pour l'estimation de l'état et des paramètres, et l'analyse de l'identifiabilité des paramètres. La classe des modèles considérés est celle des modèles quasi-linéaires à paramètres variants dans le temps (quasi-LPV) avec paramétrisation affine des matrices d'état. Utilisant l'approche polytopique de Takagi-Sugeno (T-S), deux types d'observateurs sont proposés, un pour des systèmes en temps continu et l'autre pour des systèmes en temps discret. La structure de Luenberger (correction de la dynamique à l'aide de l'erreur d'estimation de la sortie) est choisie pour la partie d'estimation d'état de l'observateur pour les deux et leur conception s'appuie sur l'approche de Lyapunov. Pour la partie d'estimation des paramètres, une structure originale est proposée en temps continu et une structure proportionnelle-intégrale (PI) est utilisée en temps discret. La troisième contribution présente succinctement une méthode d'estimation d'état et des paramètres de façon découplée. Elle utilise conjointement l'approche de l'espace de parité et un observateur à mémoire finie. Pour la quatrième contribution relative à l'identifiabilité des paramètres, les états du système sont tout d'abord éliminés en utilisant une approche de type espace de parité. Cela permet d'extraire le `résumé exhaustif' du modèle qui aide à établir l'identifiabilité du modèle. Tous les résultats sont illustrés à l'aide d'exemples / Two problems relevant to the model-based approaches to fault diagnosis and degradation estimation in commissioned buildings are investigated in this thesis: adaptive observers for state and parameter estimation, and parameter identifiability. The system models considered are the quasi-LPV models with affine parameterization. Using the Takagi-Sugeno (T-S) polytopic approach, two observer designs, one for continuous-time models and another for discrete-time models are provided. Both models use a Luenberger structure for the state estimation part and deploy the Lyapunov design approach. An innovative non-linear estimation model is obtained through the design process for the continuous-time parameter estimation whereas a proportional-integral (PI) structure is used for discrete-time. A brief third contribution is a decoupled state and parameter estimation that makes use of the parity-space approach and realized using a finite memory observer strategy. For the fourth contribution of parameter identifiability, a parity-space formulation using null-space computation is used for the elimination of states of the model from which the exhaustive summary of the model is extracted and the identifiability of the model verified. All the results are illustrated using examples
5

All models are wrong, but some are useful: Assessing model limitations for use in decision making and future model development

Apostel, Anna Maria January 2021 (has links)
No description available.

Page generated in 0.1141 seconds