• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Study of Faraday Waves with Liquid Crystal and Oleic Acid

Wu, Jean-Yee 25 July 2000 (has links)
We study the Faraday waves with liquid crystal MBBA and oleic acid. When we drive a disc of fluid on a shaker periodically, we find a series of symmetrically regular patterns of standing waves. The pattern variations with the viscosity of fluid, the depth of fluid and the size of the container are studied in this paper. It is noted that novel patterns of pentagon and heptagon are formed in some special parameters. In higher frequency region, patterns form in grid and ring with shorter wavelength of standing waves usually.
2

Nonlinear transverse vibrations of centrally clamped rotating circular disks

Manzione, Piergiuseppe 23 March 1999 (has links)
A study is presented of the instability mechanisms of a damped axisymmetric circular disk of uniform thickness rotating about its axis with constant angular velocity and subjected to various transverse space-fixed loading systems. The natural frequencies of spinning floppy disks are obtained for various nodal diameters and nodal circles with a numerical and an approximate method. Exploiting the fact that in most physical applications the thickness of the disk is small compared with its outer radius, we use their ratio to define a small parameter. Because the nonlinearities appearing in the governing partial-differential equations are cubic, we use the Galerkin procedure to reduce the problem into a finite number of coupled weakly nonlinear second-order equations. The coefficients of the nonlinear terms in the reduced equations are calculated for a wide range of the lowest modes and for different rotational speeds. We have studied the primary resonance of a pair of orthogonal modes under a space-fixed constant loading, the principal parametric resonance of a pair of orthogonal modes when the disk is subject to a massive loading system, and the combination parametric resonance of two pairs of orthogonal modes when the excitation is a linear spring. Considering the case of a spring moving periodically along the radius of the disk, we show how its frequency can be coupled to the rotational speed of the disk and lead to a principal parametric resonance. In each of these cases, we have used the method of multiple scales to determine the equations governing the modulation of the amplitudes and phases of the interacting modes. The equilibrium solutions of the modulation equations are determined and their stability is studied. / Master of Science
3

基礎励振を受ける並進・傾き連成系の振動(オートパラメトリック共振と重心高さ、偏重心、剛性差の影響)

井上, 剛志, INOUE, Tsuyoshi, 石田, 幸男, ISHIDA, Yukio, 山田, 晋太郎, YAMADA, Shintarou 08 1900 (has links)
No description available.
4

Free Surface Waves And Interacting Bouncing Droplets: A Parametric Resonance Case Study

Borja, Francisco J. 07 1900 (has links)
Parametric resonance is a particular type of resonance in which a parameter in a system changes with time. A particularly interesting case is when the parameter changes in a periodic way, which can lead to very intricate behavior. This di↵ers from periodic forcing in that solutions are not necessarily periodic. A system in which parametric resonance is realized is when a fluid bath is shaken periodically, which leads to an e↵ective time dependent gravitational force. This system will be used to study the onset of surface waves in a bath with non-uniform topography. A linear model for the surface waves is derived from the Euler equations in the limit of shallow waves, which includes the geometry of the bottom and surface tension. Experiments are performed to compare with the proposed model and good qualitative agreement is found. Another experiment which relies on a shaking fluid bath is that of bouncing fluid droplets. In the case of two droplets the shaking allows for a larger bouncing droplet to attract a smaller moving droplet in a way that creates a bound system. This bound system is studied and shows some analogous properties to quantum systems, so a quantum mechanical model for a two dimensional atom is studied, as well as a proposed model for the droplet-wave system in terms of equations of fluid mechanics.
5

Parametric Forcing of Confined and Stratified Flows

January 2019 (has links)
abstract: A continuously and stably stratified fluid contained in a square cavity subjected to harmonic body forcing is studied numerically by solving the Navier-Stokes equations under the Boussinesq approximation. Complex dynamics are observed near the onset of instability of the basic state, which is a flow configuration that is always an exact analytical solution of the governing equations. The instability of the basic state to perturbations is first studied with linear stability analysis (Floquet analysis), revealing a multitude of intersecting synchronous and subharmonic resonance tongues in parameter space. A modal reduction method for determining the locus of basic state instability is also shown, greatly simplifying the computational overhead normally required by a Floquet study. Then, a study of the nonlinear governing equations determines the criticality of the basic state's instability, and ultimately characterizes the dynamics of the lowest order spatial mode by the three discovered codimension-two bifurcation points within the resonance tongue. The rich dynamics include a homoclinic doubling cascade that resembles the logistic map and a multitude of gluing bifurcations. The numerical techniques and methodologies are first demonstrated on a homogeneous fluid contained within a three-dimensional lid-driven cavity. The edge state technique and linear stability analysis through Arnoldi iteration are used to resolve the complex dynamics of the canonical shear-driven benchmark problem. The techniques here lead to a dynamical description of an instability mechanism, and the work serves as a basis for the remainder of the dissertation. / Dissertation/Thesis / Supplemental Materials Description File / zip file containing 10 mp4 formatted video animations, as well as a text readme and the previously submitted Supplemental Materials Description File / Doctoral Dissertation Mathematics 2019
6

Modelagem dinâmica da zona de contato entre riser e fundo do mar sob ação de deslocamento e tração impostos. / Dynamics modeling of the contaact zone between riser and seabed under the action of imposed displacement and tension.

Sakamoto, Fernando Yudi 13 May 2013 (has links)
Risers são tubos que transportam fluidos do fundo do mar até as plataformas flutuantes e vice-versa. Diversas configurações e materiais são utilizados, porém apenas os steel catenary risers (SCR) são estudados neste trabalho. Os risers são estruturas extremamente esbeltas e, por isso, grande parte de seu trecho suspenso tem comportamento de cabo. Apenas em duas regiões a rigidez flexional é relevante: no hang-off (topo) e na touch-down zone (TDZ), sendo esta última a região mais complexa para análise devido ao contato unilateral com o solo. Em função dos diversos carregamentos dinâmicos a que o riser é submetido, grandes variações na curvatura ocorrem na TDZ, além de impacto e atrito com o solo, que podem reduzir a vida útil da estrutura ou até mesmo por em risco a sua integridade. Por estas razões, este trabalho visa à elaboração de uma metodologia analítica para a construção de um modelo de ordem reduzida (MOR) capaz de analisar o comportamento dinâmico não linear da TDZ de um SCR. Como na TDZ a rigidez flexional predomina sobre a rigidez geométrica, o riser é modelado como uma viga semi-infinita, tendo uma parte suspensa e outra apoiada sobre solo hipoteticamente elástico com contato unilateral. Na extremidade suspensa são impostos deslocamentos verticais e trações dinâmicas que fazem com que a posição do touch-down point (TDP) também varie com o tempo. Trata-se, portanto, de um problema com condições de contorno móveis. A metodologia adotada para a resolução deste problema foi transformá-lo em um problema de condições de contorno fixas por meio de uma transformação de variáveis. Contudo, paga-se um preço por tal transformação, e fortes não linearidades surgem na equação diferencial de movimento, tornando-a extremamente complexa para uma resolução analítica direta. Para o problema de flexão simples, consegue-se obter os modos de vibração não lineares através do método das múltiplas escalas. De posse destes modos, utiliza-se o método de Galerkin não linear para projetar a equação completa em um modo escolhido, transformando o modelo contínuo em um modelo de ordem reduzida com apenas um grau de liberdade, cuja coordenada generalizada modal é o deslocamento horizontal do TDP. Obtida a equação do MOR, nota-se que existem coeficientes que variam com o tempo, como na clássica equação de Mathieu, indicando a possibilidade de ocorrer ressonância paramétrica. Neste tipo de ressonância, entre outras possibilidades, pode ocorrer que a frequência de excitação seja o dobro da frequência natural trata-se da ressonância paramétrica principal. A equação do MOR é integrada numericamente e suas respostas são comparadas com as respostas obtidas por modelos de elementos finitos elaborados em softwares comerciais, como o Abaqus e o Orcaflex. Por fim, discutem-se as potencialidades e limitações do MOR, sendo uma grande vantagem a possibilidade de processar diversos casos facilmente, variando os parâmetros que influem nas respostas. Com este mapeamento das respostas, é possível estimar as amplitudes dos estados estacionários pós-críticos. / Risers are pipes that convey fluids from the seabed up to the floating platforms and vice-versa. Many configurations and materials are used, but only steel catenary risers (SCR) are studied in this work. Risers are extremely slender structures, and for this reason, most of the suspended part has cable behavior. Only in two regions the bending stiffness is important: at the hang-off and at the touch-down zone (TDZ), which is the most complex region for analysis because of the unilateral contact with the seabed. Due to several dynamic loads that the riser is subjected to, great curvature variations occur at the TDZ, apart from impacts and friction with the soil, which can reduce the life time of the structure or even jeopardize its integrity. For these reasons, this work aims at the development of an analytical methodology for the construction of a reduced-order model (ROM) able to analyze the nonlinear dynamic behavior of the TDZ of a SCR. As at the TDZ the bending stiffness prevails over the geometric stiffness, the riser is modeled as a semi-infinite beam, having a suspended part and another one resting on the elastic soil with unilateral contact. At the end of the suspended part, vertical displacements and dynamic tensions are imposed, that cause the TDPs position to vary with time. It is, therefore, a problem with moving boundary conditions. The methodology adopted for solving this problem was to transform it into a problem with fixed boundary conditions via a variable transformation. However, a price is paid for such a transformation, and strong nonlinearities appear in the differential equation of motion, making it extremely complex to solve analytically. For the simple bending problem, nonlinear vibration modes are obtained via the method of multiple scales. In possession of these modes, the nonlinear Galerkin method is used to project the complete equation into a chosen mode, transforming the continuum model into a reduced-order model (ROM) with only one degree of freedom whose modal generalized coordinate is the horizontal displacement of the TDP. After obtaining the ROM, it is noticed that there are coefficients that vary with time, as in the classic Mathieu equation, indicating the possibility of parametric resonance. In this kind of resonance, among other possibilities, the excitation frequency may be twice the natural frequency it is the so-called principal parametric resonance. The ROMs equation is integrated numerically and the responses are compared to those given by finite-element models studied with the help of commercial softwares, like Abaqus and Orcaflex. Finally, the potentialities and limitations of the ROM are discussed. One of the advantages is the possibility of processing several cases easily, changing the parameters that affect the responses. With this response mapping, it is possible to estimate the post-critical steady-state amplitudes that take place.
7

Modelagem dinâmica da zona de contato entre riser e fundo do mar sob ação de deslocamento e tração impostos. / Dynamics modeling of the contaact zone between riser and seabed under the action of imposed displacement and tension.

Fernando Yudi Sakamoto 13 May 2013 (has links)
Risers são tubos que transportam fluidos do fundo do mar até as plataformas flutuantes e vice-versa. Diversas configurações e materiais são utilizados, porém apenas os steel catenary risers (SCR) são estudados neste trabalho. Os risers são estruturas extremamente esbeltas e, por isso, grande parte de seu trecho suspenso tem comportamento de cabo. Apenas em duas regiões a rigidez flexional é relevante: no hang-off (topo) e na touch-down zone (TDZ), sendo esta última a região mais complexa para análise devido ao contato unilateral com o solo. Em função dos diversos carregamentos dinâmicos a que o riser é submetido, grandes variações na curvatura ocorrem na TDZ, além de impacto e atrito com o solo, que podem reduzir a vida útil da estrutura ou até mesmo por em risco a sua integridade. Por estas razões, este trabalho visa à elaboração de uma metodologia analítica para a construção de um modelo de ordem reduzida (MOR) capaz de analisar o comportamento dinâmico não linear da TDZ de um SCR. Como na TDZ a rigidez flexional predomina sobre a rigidez geométrica, o riser é modelado como uma viga semi-infinita, tendo uma parte suspensa e outra apoiada sobre solo hipoteticamente elástico com contato unilateral. Na extremidade suspensa são impostos deslocamentos verticais e trações dinâmicas que fazem com que a posição do touch-down point (TDP) também varie com o tempo. Trata-se, portanto, de um problema com condições de contorno móveis. A metodologia adotada para a resolução deste problema foi transformá-lo em um problema de condições de contorno fixas por meio de uma transformação de variáveis. Contudo, paga-se um preço por tal transformação, e fortes não linearidades surgem na equação diferencial de movimento, tornando-a extremamente complexa para uma resolução analítica direta. Para o problema de flexão simples, consegue-se obter os modos de vibração não lineares através do método das múltiplas escalas. De posse destes modos, utiliza-se o método de Galerkin não linear para projetar a equação completa em um modo escolhido, transformando o modelo contínuo em um modelo de ordem reduzida com apenas um grau de liberdade, cuja coordenada generalizada modal é o deslocamento horizontal do TDP. Obtida a equação do MOR, nota-se que existem coeficientes que variam com o tempo, como na clássica equação de Mathieu, indicando a possibilidade de ocorrer ressonância paramétrica. Neste tipo de ressonância, entre outras possibilidades, pode ocorrer que a frequência de excitação seja o dobro da frequência natural trata-se da ressonância paramétrica principal. A equação do MOR é integrada numericamente e suas respostas são comparadas com as respostas obtidas por modelos de elementos finitos elaborados em softwares comerciais, como o Abaqus e o Orcaflex. Por fim, discutem-se as potencialidades e limitações do MOR, sendo uma grande vantagem a possibilidade de processar diversos casos facilmente, variando os parâmetros que influem nas respostas. Com este mapeamento das respostas, é possível estimar as amplitudes dos estados estacionários pós-críticos. / Risers are pipes that convey fluids from the seabed up to the floating platforms and vice-versa. Many configurations and materials are used, but only steel catenary risers (SCR) are studied in this work. Risers are extremely slender structures, and for this reason, most of the suspended part has cable behavior. Only in two regions the bending stiffness is important: at the hang-off and at the touch-down zone (TDZ), which is the most complex region for analysis because of the unilateral contact with the seabed. Due to several dynamic loads that the riser is subjected to, great curvature variations occur at the TDZ, apart from impacts and friction with the soil, which can reduce the life time of the structure or even jeopardize its integrity. For these reasons, this work aims at the development of an analytical methodology for the construction of a reduced-order model (ROM) able to analyze the nonlinear dynamic behavior of the TDZ of a SCR. As at the TDZ the bending stiffness prevails over the geometric stiffness, the riser is modeled as a semi-infinite beam, having a suspended part and another one resting on the elastic soil with unilateral contact. At the end of the suspended part, vertical displacements and dynamic tensions are imposed, that cause the TDPs position to vary with time. It is, therefore, a problem with moving boundary conditions. The methodology adopted for solving this problem was to transform it into a problem with fixed boundary conditions via a variable transformation. However, a price is paid for such a transformation, and strong nonlinearities appear in the differential equation of motion, making it extremely complex to solve analytically. For the simple bending problem, nonlinear vibration modes are obtained via the method of multiple scales. In possession of these modes, the nonlinear Galerkin method is used to project the complete equation into a chosen mode, transforming the continuum model into a reduced-order model (ROM) with only one degree of freedom whose modal generalized coordinate is the horizontal displacement of the TDP. After obtaining the ROM, it is noticed that there are coefficients that vary with time, as in the classic Mathieu equation, indicating the possibility of parametric resonance. In this kind of resonance, among other possibilities, the excitation frequency may be twice the natural frequency it is the so-called principal parametric resonance. The ROMs equation is integrated numerically and the responses are compared to those given by finite-element models studied with the help of commercial softwares, like Abaqus and Orcaflex. Finally, the potentialities and limitations of the ROM are discussed. One of the advantages is the possibility of processing several cases easily, changing the parameters that affect the responses. With this response mapping, it is possible to estimate the post-critical steady-state amplitudes that take place.
8

Semi-Analytical Model to Study Vibrations of High-Speed, Rotating Axisymmetric Bodies Coupled to Other Rotating/ Stationary Structures

Vaidya, Kedar Sanjay 20 May 2021 (has links)
The vibration of complex mechanical systems that include coupled rotating and stationary bodies motivates this work. A semi-analytical model is developed for high-speed, compliant, rotating bodies. Exploiting the axisymmetry of the rotating body, the developed semi-analytical model only discretizes the two-dimensional radial cross-section; Fourier series are used in the circumferential direction. The corresponding formulation for thin-walled, axisymmetric shells is given. Even though the body is axisymmetric, its deflection as well as external forces, constraints, and supports acting on the body are allowed to be asymmetric. These asymmetric elements can be stationary or rotating. The model includes Coriolis and centripetal effects. The prestress (or geometric) stiffness matrix that arises from external forces and constant centripetal acceleration has additional terms compared to the literature, and these terms can significantly change the natural frequencies. Discrete stiffness-damper elements, elastic foundations, and constraint equations are used to couple the rotating body to other rotating and stationary bodies. The model is developed in a stationary reference frame to avoid time-dependent coefficients in the equations of motion when coupled to stationary components. Surface constraints are developed using equivalent force relations between multiple points on the surface and a reference node. Discrete stiffness-dampers, asymmetric elastic foundation, and asymmetric constraints introduce non-axisymmetry in the system. The speed-dependent natural frequencies and complex-valued vibration modes, presence of multiple Fourier harmonics in each mode, changes to critical speeds, divergence and flutter instability phenomena, and eigenvalue veering are investigated for spinning systems with asymmetric features. The developed semi-analytical model is used for rotationally periodic systems, for example, planetary gears. Rotationally periodic systems consist of multiple vibrating, rotating central components and substructures. The model is developed in a reference frame rotating with the central component that supports the substructures. Structured modal properties of the cyclically symmetric systems and diametrically opposed systems are investigated. The modes of the spinning system are categorized into translational-tilting, rotational-axial, and substructure modes. Time-varying coupling elements act as parametric excitation in the system. Large strain energy in the coupling elements lead to large parametric instability regions. The analytical closed-form expression of the parametric instability bandwidth obtained using a perturbation method compares well with numerical results from Floquet theory. / Doctor of Philosophy / Complex mechanical systems, for example, mechanical transmission, consist of coupled rotating and stationary bodies. The vibrations of rotating bodies are transmitted to the other bodies through coupling elements. To reduce weight of the system, the rotating bodies are made thin-walled resulting in increased flexibility of the body. The existing lumped parameter/rigid body models do not account for the flexibility of these rotating bodies. Conventional three-dimensional finite element models lead to a large number of degrees of freedom in the system, increasing the computational cost. We aim to develop a computationally efficient model to analyze the dynamics and vibration of complex mechanical systems. Most rotating bodies can be approximated as axisymmetric. The axisymmetric property of the rotating body is harnessed to reduce the three-dimensional model of the body to a two-dimensional radial cross-section using Fourier series in the circumferential direction. This reduces the system degrees of freedom. Coriolis, centripetal, and prestress effects are included in the model. Discrete stiffness-dampers, elastic foundations, and constraint equations couple the rotating body to other rotating and stationary bodies. Non-axisymmetric coupling elements and forces introduce asymmetry in the system. The system model for these asymmetric systems are developed in a stationary reference frame to avoid time-dependent coefficient equations of motion. Flexible stationary bodies alter the natural frequencies and vibration modes of the system. Instabilities, critical speeds, effects of asymmetry on the natural frequencies and vibration modes of the system are investigated. The model is extended for rotationally periodic systems, for examples, planetary gears and bearings. This model is developed in the reference frame that rotates with the central component that supports substructures. Structured modal characteristics are observed for the rotationally periodic systems. Changing contact conditions act as a source of parametric excitation in systems. Parametric resonances occur when natural frequencies of vibration with large strain energy in the coupling elements sum to the excitation frequency. Parametric instability regions obtained using an analytical equation compare well with numerical results.
9

Amplificação de pequenos sinais em osciladores parametricamente forçados.

SANTOS, Desiane Maiara Gomes dos. 10 October 2018 (has links)
Submitted by Emanuel Varela Cardoso (emanuel.varela@ufcg.edu.br) on 2018-10-10T18:52:25Z No. of bitstreams: 1 DESIANE MAIARA GOMES DOS SANTOS – DISSERTAÇÃO (PPGFísica) 2015.pdf: 6011160 bytes, checksum: a5021549766593cfe2eb8fe5314ea39b (MD5) / Made available in DSpace on 2018-10-10T18:52:25Z (GMT). No. of bitstreams: 1 DESIANE MAIARA GOMES DOS SANTOS – DISSERTAÇÃO (PPGFísica) 2015.pdf: 6011160 bytes, checksum: a5021549766593cfe2eb8fe5314ea39b (MD5) Previous issue date: 2015-04-10 / Capes / Nesta dissertação, analisamos a dinâmica de osciladores parametricamente forçados, com enfoque na amplificação de pequenos sinais. Iniciamos por uma revisão da ressonância paramétrica e da amplificação paramétrica em um oscilador linear parametricamente excitado. Em seguida, estudamos dois tipos de osciladores não-lineares parametricamente forçados e concluímos a dissertação com a análise de um dímero parametricamente excitado. Basicamente, analisamos os fenômenos de ressonância paramétrica e de amplificação paramétrica, comparando os resultados obtidos analiticamente (via métodos da média ou do balanço harmônico) com os obtidos via integração numérica das equações do movimento. Em todos os casos, obtivemos a linha de transição para a instabilidade paramétrica do oscilador paramétrico. Nós excitamos os amplificador paramétrico com e sem dessintonia entre entre o bombeamento e o sinal externo ac. Verificamos que o ganho da amplificação paramétrica depende da sensitivamente na fase do sinal externo ac e na amplitude do bombeamento. Mostramos que tais sistemas podem ser facilmente utilizados para recepção e decodificação de sinais com modulação de fase. Além disso, obtivemos séries temporais, envelopes e transformadas de Fourier para a resposta da amplificação paramétrica de pequenos sinais ac. Especificamente nos casos dos osciladores de Duffing parametricamente forçados, obtivemos e analisamos linhas de bifurcação e a amplitude dos ciclos limites como função da frequência e da amplitude de bombeamento. Adicionalmente, conseguimos obter uma relação analítica para os ganhos do sinal e do idler dos osciladores não-lineares parametricamente forçados pelo método do balanço harmônico. Os resultados obtidos implicam que os amplificadores paramétricos não-lineares podem ser excelentes detectores, especialmente em pontos próximos a bifurcações para instabilidade, em que apresentam altos ganhos e largura de banda bem estreitas. Por último, investigamos também o comportamento de dois osciladores lineares acoplados e parametricamente estimulados, com e sem força externa ac. Tais sistemas são muito sensíveis à fase do sinal a ser amplificado e podem ser utilizados para criar amplificadores sintonizáveis em função do parâmetro de acoplamento. / In this dissertation, we studied the dynamics of parametrically-driven oscillators, with a focus on the amplification of small signals. We begin with a revision of parametric resonance and parametric amplification in a linear oscillator parametrically excited. Next, we studied two types of nonlinear parametrically-driven oscillators and finished the dissertation with an analysis of a parametric dimer. Basically, we analyzed the phenomena of parametric resonance and parametric amplification by comparing the results obtained analytically (via the averaging or harmonic balance methods) with those of numerical integration of the equations of motion. In all cases, we obtained the transition line to parametric instability of the parametric oscillator. We excited the parametric amplifier with and without detuning between the pump and the external signal. We found that the parametric amplification depends sensitively on the phase of the external ac signal and on the internal pump amplitude. We showed that such amplifiers can be easily used for the reception and decoding of signals with phase modulation. Furthermore, we obtained time series, envelopes, and Fourier transforms of the response of the parametric amplifier to small external ac signals. Specifically in the cases of the parametrically-driven Duffing oscillators, we obtained and analysed the bifurcation lines and the amplitude of limit cycles as function of the pump amplitude and frequency. In addition, we derived an expression for the signal and idler gains of the nonlinear parametrically-driven oscillators with the harmonic balance method. The results imply that the nonlinear parametric amplifiers can be excellent detectors, specially near bifurcations to instability, due to their high gains and narrow bandwidths. Finally, we studied the dynamics of two linear oscillators coupled and parametrically excited, with and without external ac driving. We found that such systems have a wealth of dynamical responses. They present parametric amplification that is dependent on the coupling parameter and on the phases of the external ac signals. Such systems may be used as tunable amplifiers.
10

Développement instrumental en spectrométrie de masse pour le diagnostic in vitro en microbiologie clinique / Instrumental development in mass spectrometry for in vitro diagnostic in clinical microbiology

Vernier, Arnaud 16 January 2014 (has links)
La spectrométrie de masse, en particulier le couplage HPLC/MRM3, est un outil bien adapté au diagnostic in vitro, particulièrement en microbiologie clinique. L’utilisation en routine de cette technologie est cependant tributaire de sa sensibilité et de sa spécificité. Ce travail de thèse a pour objectif d’étudier la possibilité d’éjecter et de détecter simultanément et de façon sélective des ions de ratio masse/charge donnés, ceux-ci étant confinés dans un piège ionique quadrupolaire. Cette approche permet de supprimer les étapes de balayage en masse et d’intégration mathématique du signal en mode MRM3 ce qui permet de gagner à la fois en sensibilité et en spécificité (en diminuant le temps de cycle et en diminuant le rapport signal sur bruit). Cet objectif a été poursuivi premièrement par une étude théorique approfondie des équations du mouvement des ions dans un piège radiofréquence ; deuxièmement par une étude numérique de la stabilité de ces équations et enfin troisièmement par une validation expérimentale de ces résultats théoriques. La présentation de ces trois approches fait l’objet du présent mémoire / Mass spectrometry, and more specifically HPLC/MRM3, is a very suitable tool for in vitro diagnostic. Nevertheless high sensitivity and specificity has to be reached for one to use mass spectrometry as a routine technique in clinical microbiology. The objective of this work is to study the possibility of ejecting, and thus detecting, simultaneously ions several desired m/z ratio stored in a quadrupolar ion trap. This approach allows suppressing altogether the mass scan and mathematical integration stages, leading to an improvement of the signal-to-noise ratio and a decrease of the cycle time which increase both sensitivity and specificity. This objective was carried out by an extensive mathematical and numerical study of the stability of the ions’ motion equation comforted by experimental data

Page generated in 0.0974 seconds