• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonlinear Dynamics of Circular Plates under Electrical Loadings for Capacitive Micromachined Ultrasonic Transducers (CMUTs)

Vogl, Gregory William 12 January 2007 (has links)
We created an analytical reduced-order model (macromodel) for an electrically actuated circular plate with an in-plane residual stress for applications in capacitive micromachined ultrasonic transducers (CMUTs). After establishing the equations governing the plate, we discretized the system by using a Galerkin approach. The distributed-parameter equations were then reduced to a finite system of ordinary-differential equations in time. We solved these equations for the equilibrium states due to a general electric potential and determined the natural frequencies of the axisymmetric modes for the stable deflected position. As expected, the fundamental natural frequency generally decreases as the electric forcing increases, reaching a value of zero at pull-in. However, strain-hardening effects can cause the frequencies to increase with voltage. The macromodel was validated by using data from experiments and simulations performed on silicon-based microelectromechanical systems (MEMS). For example, the pull-in voltages differed by about 1% from values produced by full 3-D MEMS simulations. The macromodel was then used to investigate the response of an electrostatically actuated clamped circular plate to a primary resonance excitation of its first axisymmetric mode. The method of multiple scales was used to derive a semi-analytical expression for the equilibrium amplitude of vibration. The plate was found to always transition from a hardening-type to a softening-type behavior as the DC voltage increases towards pull-in. Because the response of CMUTs is highly influenced by the boundary conditions, an updated reduced-order model was created to account for more realistic boundary conditions. The electrode was still considered to be infinitesimally thin, but the electrode was allowed to have general inner and outer radii. The updated reduced-order model was used to show how sensitive the pull-in voltage is with respect to the boundary conditions. The boundary parameters were extracted by matching the pull-in voltages from the macromodel to those from finite element method (FEM) simulations for CMUTs with varying outer and inner radii. The static behavior of the updated macromodel was validated because the pull-in voltages for the macromodel and FEM simulations were very close to each other and the extracted boundary parameters were physically realistic. A macromodel for CMUTs was then created that includes both the boundary effects and an electrode of finite thickness. Matching conditions ensured the continuity of displacements, slopes, forces, and moments from the composite to the non-composite regime of the CMUT. We attempted to validate this model with results from FEM simulations. In general, the center deflections from the macromodel fell below those from the FEM simulation, especially for relatively high residual stresses, but the first natural frequencies that accompany the deflections were very close to those from the FEM simulations. Furthermore, the forced vibration characteristics also compared well with the macromodel predictions for an experimental case in which the primary resonance curve bends to the right because the CMUT is a hardening-type system. The reduced-order model accounts for geometric nonlinear hardening, residual stresses, and boundary conditions related to the CMUT post, allows for general design variables, and is robust up to the pull-in instability. However, even more general boundary conditions need to be incorporated into the model for it to be a more effective design tool for capacitive micromachined ultrasonic transducers. / Ph. D.
2

A Theoretical and Experimental Study of Nonlinear Dynamics of Buckled Beams

Emam, Samir A. 09 January 2003 (has links)
We investigate theoretically and experimentally the nonlinear responses of a clamped-clamped buckled beam to a variety of external harmonic excitations and internal resonances. We assume that the beam geometry is uniform and its material is homogeneous. We initially buckle the beam by an axial force beyond the critical load of the first buckling mode, and then we apply a transverse harmonic excitation that is uniform over its span. The beam is modeled according to the Euler-Bernoulli beam theory and small strains and moderate rotation approximations are assumed. We derive the equation of motion governing the nonlinear transverse planar vibrations and associated boundary conditions using the extended Hamilton's principle. The governing equation is a nonlinear integral-partial-differential equation in space and time that possesses quadratic and cubic nonlinearities. A closed-form solution for such equations is not available and hence we seek approximate solutions. We use perturbation methods to investigate the slow dynamics in the neighborhood of an equilibrium configuration. A Galerkin approximation is used to discretize the nonlinear partial-differential equation governing the beam's response and obtain a set of nonlinearly coupled ordinary-differential equations governing the time evolution of the response. We based our theory on a multi-mode Galerkin discretization. To investigate the large-amplitude dynamics, we use a shooting method to numerically integrate the discretized equations and obtain periodic orbits. The stability and bifurcations of these periodic orbits are investigated using Floquet theory. We solve the nonlinear buckling problem to determine the buckled configurations as a function of the applied axial load. We compare the static buckled configurations obtained from the discretized equations with the exact ones. We find out that the number of modes retained in the discretization has a significant effect on these static configurations. We consider three cases: primary resonance, subharmonic resonance of order one-half of the first vibration mode, and one-to-one internal resonance between the first and second modes. We obtain interesting dynamics, such as phase-locked and quasiperiodic motions, resulting from a Hopf bifurcation, snapthrough motions, and a sequence of period-doubling bifurcations leading to chaos. To validate our theoretical results, we ran an experiment, which is a modified version of the experiment designed by Kreider and Nayfeh. We find that the obtained theoretical results are in good qualitative agreement with the experimental results. In the case of one-to-one internal resonance, we report, theoretically and experimentally, energy transfer between the first mode, which is externally excited, and the second mode. / Ph. D.
3

Nonlinear transverse vibrations of centrally clamped rotating circular disks

Manzione, Piergiuseppe 23 March 1999 (has links)
A study is presented of the instability mechanisms of a damped axisymmetric circular disk of uniform thickness rotating about its axis with constant angular velocity and subjected to various transverse space-fixed loading systems. The natural frequencies of spinning floppy disks are obtained for various nodal diameters and nodal circles with a numerical and an approximate method. Exploiting the fact that in most physical applications the thickness of the disk is small compared with its outer radius, we use their ratio to define a small parameter. Because the nonlinearities appearing in the governing partial-differential equations are cubic, we use the Galerkin procedure to reduce the problem into a finite number of coupled weakly nonlinear second-order equations. The coefficients of the nonlinear terms in the reduced equations are calculated for a wide range of the lowest modes and for different rotational speeds. We have studied the primary resonance of a pair of orthogonal modes under a space-fixed constant loading, the principal parametric resonance of a pair of orthogonal modes when the disk is subject to a massive loading system, and the combination parametric resonance of two pairs of orthogonal modes when the excitation is a linear spring. Considering the case of a spring moving periodically along the radius of the disk, we show how its frequency can be coupled to the rotational speed of the disk and lead to a principal parametric resonance. In each of these cases, we have used the method of multiple scales to determine the equations governing the modulation of the amplitudes and phases of the interacting modes. The equilibrium solutions of the modulation equations are determined and their stability is studied. / Master of Science
4

Modeling, Simulation, and Analysis of Micromechanical Filters Coupled with Capacitive Transducers

Hammad, Bashar Khalil 06 June 2008 (has links)
The first objective of this Dissertation is to present a methodology to calculate analytically the mode shapes and corresponding natural frequencies and determine critical buckling loads of mechanically coupled microbeam resonators with a focus on micromechanical filters. The second objective is to adopt a nonlinear approach to build a reduced-order model and obtain closed-form expressions for the response of the filter to a primary resonance. The third objective is to investigate the feasibility of employing subharmonic excitation to build bandpass filters consisting of either two sets of two beams coupled mechanically or two sets of clamped-clamped beams. Throughout this Dissertation, we treat filters as distributed-parameter systems. In the first part of the Dissertation, we demonstrate the methodology by considering a mechanical filter composed of two beams coupled by a weak beam. We solve a boundary-value problem (BVP) composed of five equations and twenty boundary conditions for the natural frequencies and mode shapes. We reduce the problem to a set of three linear homogeneous algebraic equations for three constants and the frequencies in order to obtain a deeper insight into the relation between the design parameters and the performance metrics. In an approach similar to the vibration problem, we solve the buckling problem to study the effect of the residual stress on the static stability of the structure. To achieve the second objective, we develop a reduced-order model for the filter by writing the Lagrangian and applying the Galerkin procedure using its analytically calculated linear global mode shapes as basis functions. The resulting model accounts for the geometric and electric nonlinearities and the coupling between them. Using the method of multiple scales, we obtain closed-form expressions for the deflection and the electric current in the case of one-to-one internal and primary resonances. The closed-form solution shows that there are three possible operating ranges, depending on the DC voltage. For low DC voltages, the effective nonlinearity is positive and the filter behavior is hardening, whereas for large DC voltages, the effective nonlinearity is negative and the filter behavior is softening. We found that, when mismatched DC voltages are applied to the primary resonators, the first mode is localized in the softer resonator and the second mode is localized in the stiffer resonator. We note that the excitation amplitude can be increased without worrying about the appearance of multivaluedness when operating the filter in the near-linear range. The upper bound in this case is the occurrence of the dynamic pull-in instability. In the softening and hardening operating ranges, the adverse effects of the multi-valued response, such as hysteresis and jumps, limit the range of the input signal. To achieve the third objective, we propose a filtration technique based on subharmonic resonance excitation to attain bandpass filters with ideal stopband rejection and sharp rolloff. The filtration mechanism depends on tuning two oscillators such that one operates in the softening range and the other operates in the hardening range. Hardware and logic schemes are necessary to realize the proposed filter. We derive a reduced-order model using a methodology similar to that used in the primary excitation case, but with all necessary changes to account for the subharmonic resonance of order one-half. We observe that some manipulations are essential for a structure of two beams coupled by a weak spring to be suitable for filtration. To avoid these complications, we use a pair of single clamped-clamped beams to achieve our goal. Using a model derived by attacking directly the distributed-parameters problem, we suggest design guidelines to select beams that are potential candidates for building a bandpass filter. We demonstrate the proposed mechanism using an example. / Ph. D.

Page generated in 0.0653 seconds