Spelling suggestions: "subject:"parametrische fluoreszenz"" "subject:"parametrische rotfluoreszenz""
1 |
Narrow-band single photons as carriers of quantum informationHöckel, David 13 January 2011 (has links)
Die Nutzung von Quanteneigenschaften für die Informationsverarbeitung, die sogenannte Quanteninformationsverarbeitung (QIP), ist ein seit zwei Jahrzehnten zunehmend populäres Forschungsfeld. Es hat sich gezeigt, dass Einzelphotonen die am besten geeigneten Träger für den Transport von Quanteninformation über weite Strecken sind. Obwohl viele Methoden zur Erzeugung von Einzelphotonen existieren, wurde bisher nur wenig Forschungsarbeit an schmalbandigen Einzelphotonen, d.h. mit spektralen Breiten im MHz-Bereich geleistet. Allerdings sind solche Einzelphotonen besonders wichtig, wenn Kopplungen zwischen Einzelphotonen und atomaren Systemen, die oft als Verarbeitungseinheiten in der QIP genutzt werden, realisiert werden sollen. Diese Doktorarbeit befasst sich mit mehreren Forschungsaspekten zu schmalbandigen Einzelphotonen, die von Bedeutung sind, wenn solche Photonen als Informationsträger genutzt werden sollen. Zunächst wird eine Quelle von schmalbandigen Einzelphotonen vorgestellt, die auf dem Konzept der parametrischen Fluoreszenz innerhalb eines optischen Resonators basiert und die einen konstanten Strom von Photonenpaaren emittiert. Eine statistische Beschreibung dieser Photonenpaare wird vorgestellt und erstmals direkt gemessen. Um Emission in nur eine einzelne Mode zu erreichen, wurde der Photonenstrom mit Hilfe eines speziell entwickelten Mehrpass-Fabry-Perot-Etalons mit geringem Durchlassbereich und sehr hohem Kontrast gefiltert. Photon-Atom-Wechselwirkungen werden im zweiten Teil der Arbeit gezeigt. Der Effekt der elektromagnetisch induzierten Transparenz (EIT) wird vorgestellt und experimentell demonstriert. Die ersten EIT Experimente in Cäsiumgaszellen bei Raumtemperatur mit Probepulsen, die nur ein einzelnes Photon enthalten, werden demonstriert. Schließlich zeigt ein umfassender Ausblick wie die entwickelten experimentellen Bausteine erweitert werden können, um Einzelphotonenspeicherung zu erlauben und die Technologie für Quantenrepeater zu demonstrieren. / The use of quantum mechanical properties for information processing, so-called quantum information processing (QIP) has become an increasingly popular research field in the last two decades. It turned out that single photons are the most reliable long distance carriers of quantum information, e.g., tools to connect different processing nodes in QIP. While several methods exist to produce single photons, only little research has been performed so far on narrow-band single photons with spectral bandwidths in the MHz regime. Such photons are, however, of particular importance when coupling of single photons to atomic systems, which are often used in QIP as processing nodes, shall be realized. This thesis covers several research aspects on narrow-band single photons, all of which are important if such photons should be used as quantum information carriers. At first, a source for narrow-band single photons is introduced. This source is based on the concept of parametric down-conversion inside an optical resonator. It emits a constant stream of photon pairs. One of the two photons from the pair can be detected heralding the presence of the other photon. A statistical description of these photon pairs is introduced and for the first time also directly measured. In order to reach single-mode single-photon emission, the stream of photons was filtered with a specifically developed multi-pass Fabry-Perot etalon. This filter has a passband FWHM of only 165 MHz and particularly high contrast.
|
2 |
Triply-Resonant Cavity-Enhanced Spontaneous Parametric Down-ConversionAhlrichs, Andreas 22 July 2019 (has links)
Die verlässliche Erzeugung einzelner Photonen mit wohldefinierten Eigenschaften in allen Freiheitsgraden ist entscheidend für die Entwicklung photonischer Quantentechnologien. Derzeit basieren die wichtigsten Einzelphotonenquellen auf dem Prozess der spontanen parameterischen Fluoreszenz (SPF), bei dem ein Pumpphoton in einem nichtlinearen Medium spontan in ein Paar aus Signal und Idlerphotonen zerfällt. Resonator-überhöhte SPF, also das Plazieren des nichtlinearen Mediums in einem optischen Resonator, ist ein weit verbreitetes Verfahren, um Einzelphotonenquellen mit erhöhter Helligkeit und angepassten spektralen Eigenschaften zu konstruieren. Das Anpassen der spektralen Eigenschaften durch gezielte Auswahl der Resonatoreigenschaften ist besonders für hybride Quantentechnologienvon Bedeutung, welche darauf abzielen, unterschiedliche Quntensysteme so zu kombinieren, dass sich deren Vorteile ergänzen. Diese Arbeit stellt eine umfassende theoretische und experimentelle Analyse der dreifach resonanten SPF vor. Das aus der Literatur bekannte theoretische Modell wird diesbezüglich verbessert, dass der Einfluss sämtlicher Eigenschaften des Resonators auf die wichtigen experimentellen Größen (z.B. die Erzeugungsrate) gezielt ausgewertet werden kann. Dieses verbesserte und hoch genaue Modell stellt eine wichtige Grundlage für die Entwicklung und Optimierung neuartiger Photonenpaarquellen dar. Im experimentellen Teil dieser Arbeit wird der Aufbau und die Charakterisierung einer dreifach resonanten Photonenpaarquellen präsentiert. Die neu entwickelte digitale Regelelektronik sowie ein hochstabiler, schmalbandiger Monochromator welcher auf monolitischen, polarisationsunabhängigen Fabry-Pérot Resonatoren basiert, werden vorgestellt. Indem diese temperaturstabilisierten Resonatoren als Spetrumanalysator verwendet werden, wird zum ersten Mal die Frequenzkammstruktur des Spektrums der erzeugten Signal- und Idlerphotonen nachgewiesen. Des Weiteren wird der Einfluss der Pumpresonanz auf die Korrelationsfunktion und die Zweiphotoneninterferenz von Signal- und Idlerphotonen simuliert und vermessen. Abschließend werden Experimente aus dem Bereich der hybriden Quantennetzwerke präsentiert, in welchen Quantenfrequenzkonversion verwendet wird um die erzeugten Signalphotonen in das Telekommunikationsband zu transferieren. Dabei wird nachgewiesen, dass das temporale Wellenpaket durch die Konversion nicht beeinflusst wird und aufgezeigt, wie Quantennetzwerke von kommerziellen Telekommunikationstechnologien profitieren können. / The consistent generation of single photons with well-defined properties in all degrees of freedom is crucial for the development of photonic quantum technologies. Today, the most prominent sources of single photons are based on the process of spontaneous parametric down-conversion (SPDC) where a pump photon spontaneously decays into a pair of signal and idler photons inside a nonlinear medium. Cavity-enhanced SPDC, i.e., placing the nonlinear medium inside an optical cavity, is widely used to build photon-pair sources with increased brightness and tailored spectral properties. This spectral tailoring by selective adjustment of the cavity parameters is of particular importance for hybrid quantum technologies which seek to combine dissimilar quantum systems in a way that their advantages complement each other. This thesis provides a comprehensive theoretical and experimental analysis of triply-resonant cavity-enhanced SPDC. We improve the theoretical model found in the literature such that the influence of all resonator properties on the important experimental parameters (e.g., the generation rate) can be analyzed in detail. This convenient and highly accurate model of cavity-enhanced SPDC represents an important basis for the design and optimization of novel photonpair sources. The experimental part of this thesis presents the setup and characterization of a triply-resonant photon-pair source. We describe the digital control system used to operate this source over days without manual intervention, and we present a highly stable, narrow-linewidth monochromator based on cascaded, polarization-independent monolithic Fabry-Pérot cavities. Utilizing these temperature-stabilized cavities as a spectrum analyzer, we verify, for the first time, the frequency comb spectral structure of photons generated by cavity-enhanced SPDC. We further simulate and measure the impact of the pump resonance on the temporal wave-packets and the two-photon interference of signal and idler photons. Finally, we present a series of experiments in the context of hybrid quantum networks where we employ quantum frequency conversion (QFC) to transfer the generated signal photons into the telecommunication band. We verify the preservation of the temporal wave-packet upon QFC and highlight how quantum networks can benefit from advanced commercial telecommunication technologies.
|
Page generated in 0.0847 seconds