• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 10
  • 10
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization Of Nucleation And Ultrafine Particle Growth In Rural Continental Environments

Bullard, Robert Lesley 01 May 2015 (has links)
Aerosols are ubiquitous throughout Earth's atmosphere and their size, chem- ical composition, and concentration cause varying degrees of impact on climate and human health. Atmospheric aerosols can affect climate by their varied interactions with incoming solar radiation and their role in cloud formation and microphysics. Nucleation of fresh particles plays a significant role in the number of boundary layer cloud condensation nuclei (CCN). Elevated sulfuric acid concentration from power production has long been shown to contribute to new particle formation, but is not present in all instances where nucleation is observed. A third component has long been hypothesized and different studies in different locations have shown evidence of either ammonia, amines, or organics acting in conjunction with sulfuric acid and water to initiate new particle formation under certain meteorological conditions. While atmospheric nucleation has been examined world-wide in many urban as well as remote forested locations, it has not been studied extensively in the non-forested Midwestern United States, where sulfuric acid from coal-fired power plants and ammonia from agricultural activity are prevalent. For this doctoral dissertation work, instruments were designed, built, and tested for the purpose of investigating the concentration, size distribution, and volatility of atmospheric aerosols in non-forested rural continental environments in the Midwestern United States. An impact assessment of the University of Iowa Power Plant on air quality in Johnson County, IA highlights the ability to field test the emission ratios of fine particulates emissions to other gaseous emissions. Analysis on 20 years of climatically relevant aerosol properties in the rural Midwestern location of Bondville, IL reveals enhancement of particle number in the Spring and Fall seasons. Bondville is also the location of a three-year aerosol vertical profiling field campaign, where ultra-fine particles were found to be enhanced in the planetary boundary layer. The long standing records are compared with current full aerosol size distribution particle measurements for a period of ∼ 10 months in Bondville, where the seasonality of high particle number concentrations are verified and attributed to nucleation. Nucleation is observed to varying degrees in all seasons at this location, but is most prevalent and intense in the Spring and Fall months under otherwise clean atmospheric conditions. This work paves the way for a more in depth examination of the volatility of fine particle matter during nucleation and the development of a Midwestern chemical nucleation model to investigate numerous nucleation conditions and mechanisms. This work will contribute important information to the atmospheric science community on the process controlling the particle number size distribution in the region.
2

Thermal Design Optimization of a Miniature Condensate Particle Counter

Kuttarath Veettil, Deepak 04 December 2009 (has links)
No description available.
3

Use of the Confined Impinging Jet Reactor for production of nanoscale Iron Oxide particles

Siddiqui, Shad Waheed Unknown Date
No description available.
4

Use of the Confined Impinging Jet Reactor for production of nanoscale Iron Oxide particles

Siddiqui, Shad Waheed 11 1900 (has links)
The confined impinging jet reactor gives efficient mixing performance as required for fast reactions. In this work the mixing performance of CIJR is characterized through three measures: estimates of the energy dissipation, micromixing efficiency based on the yield of a homogeneous (iodide-iodate) reaction and particle size resulting from a heterogeneous (iron oxide) precipitation reaction. Whereas product yield and energy dissipation are used to test operational robustness of CIJR, iron oxide model system is used to study the effect of feed flow rate (mixing) and reactant concentration on precipitate agglomerate size. Mixing and concentration effects on nucleation, particle growth and particle agglomeration are tracked to understand the agglomeration process. Various types of stabilizers and additive concentrations to limit particle agglomeration are also tested. Effects of in situ and post-reaction sonication on agglomerate size are also investigated. Efforts are made to determine variations in mixing efficiency the operational robustness of the scale-up (2X and 4X) geometries. Also efforts are made to identify scaling parameters and the limit on geometric scale-up for good mixing performance. Energy dissipation is found to vary between 20 W/kg and 6800 W/kg in CIJR and decreases on scale-up at constant Reynolds number. The operation of the CIJR and the scale-up geometries is robust to changes in flow rate, exhibiting stable performance up to 30% difference in inlet flow rates. Reliable mixing performance is obtained until 2X scale-up, while at low flow rates, the jets fail to impinge in 4X scale-up, and sometimes failing to fill the reactor volume. Iron oxide primary and agglomerate particles are seen to vary with flow rate and reactant concentrations. Largest primary particles (and smallest agglomerates) are obtained at high flow rates and high reactant concentrations, which indicate to size dependent agglomerative tendency of the primary particles. Stabilizers added in situ see limited success. Post-reaction sonication is helpful in dispersing soft agglomerates, but in situ sonication shows no significant reduction in agglomerate size with or without stabilizer. Primary particles are understood to agglomerate due to collisions induced by Brownian motion, simple shear and velocity fluctuations in turbulent flows. These collision mechanisms operate at different length scales in the fluid mass. / Chemical Engineering
5

The Effect of Reaction Conditions on the Nucleation and Particle Growth of a Colloidal Covalent Organic Framework

Posson, Brendan 01 June 2021 (has links) (PDF)
Covalent organic frameworks (COFs) are a novel class of crystalline materials with regular porosity, high specific surface area, and various linkage chemistries. Conventional chemical syntheses of these materials lead to the formation of bulk powders characterized as polycrystalline aggregates. Synthesizing these materials as colloidal systems is an effective means to prevent aggregation and achieve larger single-crystalline domain sizes. In this thesis, I describe the effect of temperature and transimination catalyst strength on COF particle nucleation and particle growth. Morphology and crystallinity of the COF-300 particles were confirmed using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The onset of colloidal light scattering, or the Tyndall Effect, was measured using Dynamic Light Scattering (DLS). Reaction temperature affects both the reaction rate and the solubility of the monomeric and oligomeric species. The higher solubility at higher temperatures is hypothesized to delay particle nucleation, or the onset of colloidal light scattering. DLS measurements confirmed these results. However, measurement of particle size using DLS and SEM showed little association between the particle size and reaction temperature. Stronger acids are similarly hypothesized to accelerate the chemical reaction, leading to a shorter induction delay and smaller particles. DLS measurements confirmed this hypothesis on the effect of acid catalyst on the induction delay; stronger acids led to a v shorter induction delay. However, preliminary SEM measurements suggest that stronger acid catalysts create larger COF-300 particles.
6

Evaporation Enhancement for Condensational Nanoparticle Growth in Hydrophobic Evaporation - Condensation Tube

Liang, Huayan 13 October 2014 (has links)
No description available.
7

IN-SITU SMALL ANGLE X-RAY SCATTERING STUDIES OF CONTINUOUS NANO-PARTICLE SYNTHESIS IN PREMIXED AND DIFFUSION FLAMES

AGASHE, NIKHIL R. 06 October 2004 (has links)
No description available.
8

Shearing Mechanisms and Complex Particle Growth in Nickel Superalloy 718

McAllister, Donald P. 08 August 2016 (has links)
No description available.
9

Nukleace kyseliny sírové a vody - laboratorní a atmosférická pozorování / Nucleation of Sulphuric Acid and Water - Laboratory and Atmospheric Observations

Škrabalová, Lenka January 2016 (has links)
1 ABSTRACT: This study is dedicated to the study of nucleation of sulphuric acid and water, which presents the key process associated with secondary aerosol formation via gas to particle conversion. We investigated the nucleation rates, new aerosol particles formation and growth dynamics of newly nucleated particles. These processes were explored in both laboratory and field experiments. In the laboratory measurements, we explored the H2SO4 - H2O nucleation rates and growth rates of newly formed particles under well-defined conditions and we also investigated the effect of experimental conditions on particle growth dynamics. Furthermore, we proposed a model, which predicts the particle growth and accounts for condensation of H2SO4, H2O and NH3. The comparison of experimental growth rates with atmospheric ones was made and resulting implications of the chemical nature of compounds involved in the early growth of nucleated particles is also presented. To investigate the atmospheric H2SO4 - H2O nucleation and new particle formation, we analysed a two-year long dataset of particle number size distributions, obtained from a urban background station in Prague Suchdol. A special attention was given to a recently reported special feature of particle growth dynamics - a particle shrinkage following previous new...
10

Réactions photosensibilisées contribuant à la croissance et au vieillissement des aérosols atmosphériques organiques / Photosensitized reactions contributing to the growth and aging of atmospheric aerosols

Aregahegn, Kifle Zeleke 04 December 2014 (has links)
L'atmosphère est un milieu hautement hétérogène contenant de la matière condensée : les aérosols. Ceux-ci sont des composants importants de l'atmosphère car ils impactent le bilan radiatif planétaire mais aussi la qualité de l'air. En particulier les aérosols organiques secondaires (AOS), produits par la transformation chimique dans l'air de nombreux composés organiques, plus ou moins volatils, représentent une fraction conséquente dans le budget global des aérosols atmosphériques pour laquelle de nombreuses incertitudes persistent. En particulier, leurs voies de formation et de transformation dans la troposphère restent très mal décrites. C'est pourquoi, cette thèse décrit principalement l'étude de trois aspects de la croissance et du vieillissement (transformation) des aérosols : caractérisation de la croissance des AOS par des processus photosensibilisés ; investigations mécanistiques du vieillissement des AOS et de la photochimie des photosensibilisateurs ; analyse chimique des composés issus du vieillissement des AOS / Aerosols are important constituents of the atmosphere and secondary organic aerosols (SOA) represent a main fraction of the organic aerosols in the total budget. This thesis mainly reports the investigation of three aspects of the growth and aging of SOA: the photosensitized SOA growth ; the mechanistic investigation of SOA aging and of the photochemistry of photosensitizers ; the analysis of the chemical composition of aged SOA. The photosensitized growth and aging processes of SOA were investigated using an aerosol flow tube coupled with various aerosol and gas sensing instruments. For further analysis of the aerosol composition and a better understanding of the formation and growth of SOA in these experiments the aerosols produced in the dark and in the light were sampled on filters at the exit of the flow tube

Page generated in 0.0529 seconds