• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 15
  • 5
  • 1
  • Tagged with
  • 52
  • 52
  • 52
  • 52
  • 22
  • 16
  • 12
  • 11
  • 10
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Particle Image Velocimetry (PIV) Measurements In A Low Intermittency Transitional Flow

Mandal, Alakesh Chandra 01 1900 (has links) (PDF)
No description available.
12

Tomographic Particle Image Velocimetry Using Colored Shadow Imaging

Alarfaj, Meshal K. 02 1900 (has links)
Tomographic Particle Image Velocimetry Using Colored Shadow Imaging by Meshal K Alarfaj, Master of Science King Abdullah University of Science & Technology, 2015 Tomographic Particle image velocimetry (PIV) is a recent PIV method capable of reconstructing the full 3D velocity field of complex flows, within a 3-D volume. For nearly the last decade, it has become the most powerful tool for study of turbulent velocity fields and promises great advancements in the study of fluid mechanics. Among the early published studies, a good number of researches have suggested enhancements and optimizations of different aspects of this technique to improve the effectiveness. One major aspect, which is the core of the present work, is related to reducing the cost of the Tomographic PIV setup. In this thesis, we attempt to reduce this cost by using an experimental setup exploiting 4 commercial digital still cameras in combination with low-cost Light emitting diodes (LEDs). We use two different colors to distinguish the two light pulses. By using colored shadows with red and green LEDs, we can identify the particle locations within the measurement volume, at the two different times, thereby allowing calculation of the velocities. The present work tests this technique on the flows patterns of a jet ejected from a tube in a water tank. Results from the images processing are presented and challenges discussed.
13

Performance of Electrohydrodynamic (EHD) Performance of Corona Discharge via Particle Image Velocimetry (PIV)

Abdul Halim, Bilal January 2022 (has links)
No description available.
14

Analysis of strip footings on fibre reinforced slopes with the aid of Particle Image Velocimetry (PIV)

Mirzababaei, M., Mohamed, Mostafa H.A., Miraftab, M. 26 October 2016 (has links)
Yes / This paper provides results of a comprehensive investigation into the use of waste carpet fibres for reinforcement of clay soil slopes. The interaction between laboratory scale model slopes made of fibre reinforced clay soil and surface strip footing load was examined. Results for the influence of two variables namely fibre content and distance between the footing edge and the crest of the slope are presented and discussed. Particle Image Velocimetry (PIV) technique was employed to study the deformation of the slope under the surface loading. The front side of the tank was made of a thick Perspex glass to facilitate taking accurate images during the loading stage. To study the stress induced in the slope under footing pressure, excess pore-water pressure and total stress increase were measured at predetermined locations within the slope. The results showed that fibre reinforcement increased the bearing resistance of the model slope significantly. For instance, inclusion of 5% waste carpet fibre increased the bearing pressure by 145% at 10% settlement ratio. / The post-print of this article will be released for public view when the version of record has been published by ASCE.
15

Mechanics and transport characterization of bioengineered tissue microenvironment platforms

Antoine, Elizabeth E. 24 April 2014 (has links)
The tissue microenvironment is a complex living system containing heterogeneous mechanical and biophysical cues. Cellular components are surrounded by extracellular matrix and interstitial fluid, while transport of nutrients and biochemical factors is achieved via the vasculature. Each constituent of the tissue microenvironment can play a significant role in its ability to function normally. Many diseases including cancer have been linked with dysfunction in the tissue microenvironment; therefore an improved understanding of interaction between components of this complex system is needed. In vitro platforms mimicking the tissue microenvironment appear to provide the most promising avenue for studies of cell-cell and cell-matrix interactions as well as elucidation of the mechanisms leading to disease phenomena such as tumor metastasis. However, successful recapitulation of all three primary components of the tissue microenvironment in three dimensions has remained challenging. In particular, matching mechanical cues and biochemical transport to in vivo conditions is difficult because of lack of quantitative characterization of the physical properties and parameters of such platforms. In this work, extensive characterization of collagen I hydrogels, popular for use as extracellular matrix mimics, was performed in order to enable tuning to specific in vivo conditions. Additionally, perfusion of blood in a 3D tissue microenvironment platform fabricated using collagen hydrogels was characterized to enable future advances in in vitro modeling of the in vivo microenvironment. Finally, the tissue microenvironment platform is modified to enable biochemical gradients within the hydrogel and used to examine directed migration (chemotaxis) of human breast cancer cells in response to gradients in growth factor combined with varied stiffness and pore diameter of the extracellular matrix. / Ph. D.
16

Entrainment Characteristics of Turbulent Round Gas Jets Submerged in Water

Drew, Brady Patterson 22 September 2011 (has links)
The entrainment process in two-phase buoyant jets differs significantly from their singlephase counterparts, and is not well understood. Entrainment models developed for singlephase flow are often used in two-phase jetting simulations, albeit with limited success. In this work, Particle Image Velocimetry (PIV) and shadowgraph flow visualization experiments have been conducted on submerged round gas jets of varying speeds and nozzle diameters with the goal of improving our understanding of the entrainment process in a two-phase (gas-liquid) jet. The total entrainment estimated using the PIV measurements is higher than the respective values suggested by a common empirical model developed for singlephase buoyant jets. A two-phase theoretical entrainment model used for comparison shows an overestimation of entrainment, but predicts the increase in the rate of entrainment with axial distance from the jet nozzle seen in the PIV results. This thesis also presents advances in PIV processing methodology that were developed concurrently with the entrainment research. The novel Spectral Phase Correlation (SPC) allows for particle displacement to be determined directly from phase information in the Fourier domain. Some of the potential benefits of the SPC explored here include (1) avoidance of errors introduced by spatial peak-finding routines; (2) use of a modal analysis that can be used to provide information such as correlation quality; and (3) introduction of a means of incorporating information from multiple image windows. At low image noise levels, the method performs as well as an advanced CC-based method. However, difficulties unwrapping the aliased phase information cause the SPC's performance to degrade at high noise levels. / Master of Science
17

Investigations of Flow Patterns in Ventilated Rooms Using Particle Image Velocimetry : Applications in a Scaled Room with Rapidly Varying Inflow and over a Wall-Mounted Radiator

Sattari, Amir January 2015 (has links)
This thesis introduces and describes a new experimental setup for examining the effects of pulsating inflow to a ventilated enclosure. The study aimed to test the hypothesis that a pulsating inflow has potential to improve ventilation quality by reducing the stagnation zones through enhanced mixing. The experimental setup, which was a small-scale, two-dimensional (2D), water-filled room model, was successfully designed and manufactured to be able to capture two-dimensional velocity vectors of the entire field using Particle Image Velocimetry (PIV). Using in-house software, it was possible to conclude that for an increase in pulsation frequency or alternatively in the flow rate, the stagnation zones were reduced in size, the distribution of vortices became more homogeneous over the considered domain, and the number of vortices in all scales had increased. Considering the occupied region, the stagnation zones were moved away in a favorable direction from a mixing point of view. In addition, statistical analysis unveiled that in the far-field occupied region of the room model, stronger eddies were developed that we could expect to give rise to improved mixing. As a fundamental experimental study performed in a 2D, small-scale room model with water as operating fluid, we can logically conclude that the positive effect of enhanced mixing through increasing the flow rate could equally be accomplished through applying a pulsating inflow. In addition, this thesis introduces and describes an experimental setup for study of air flow over a wall-mounted radiator in a mockup of a real room, which has been successfully designed and manufactured. In this experimental study, the airflow over an electric radiator without forced convection, a common room-heating technique, was measured and visualized using the 2D PIV technique. Surface blackening due to particle deposition calls for monitoring in detail the local climate over a heating radiator. One mechanism causing particle deposition is turbophoresis, which occurs when the flow is turbulent. Because turbulence plays a role in particle deposition, it is important to identify where the laminar flow over radiator becomes turbulent. The results from several visualization techniques and PIV measurements indicated that for a room with typical radiator heating, the flow over the radiator became agitated after a dimensionless length, 5.0–6.25, based on the radiator thickness. Surface properties are among the influencing factors in particle deposition; therefore, the geometrical properties of different finishing techniques were investigated experimentally using a structured light 3D scanner that revealed differences in roughness among different surface finishing techniques. To investigate the resistance to airflow along the surface and the turbulence generated by the surfaces, we recorded the boundary layer flow over the surfaces in a special flow rig, which revealed that the types of surface finishing methods differed very little in their resistance and therefore their influence on the deposition velocity is probably small. / Det övergripande syftet med den första studien i avhandlingen var att undersöka hypotesen att ett pulserande inflöde till ett ventilerade utrymme har en potential till att förbättra ventilationens kvalitet genom att minska stagnationszoner och därigenom öka omblandningen. För genomförande av studien byggdes en experimentuppställning i form av en tvådimensionell (2D) småskalig modell av ett ventilerat rum. Strömningsmediet i modellen var vatten. Det tvådimensionella hastighetsfältet registrerades över hela modellen med hjälp av Particle Image Velocimetry (PIV). Vid ett stationärt tillflöde bildas ett stagnationsområde i centrum av rumsmodellen. Vid ett pulserade inflöde genererades sekundära virvlar. Med en egen utvecklad programvara var det möjligt att kvantifiera statistiken hos virvlarna. Det pulserade inflödet gjorde att inom området där det vid stationärt tillflöde fanns en stagnationszon ökade antalet virvlar i alla storlekar och fördelningen av virvlar blev mera homogen än tidigare. Detta kan förväntas ge upphov till förbättrad omblandning. Baserat på en grundläggande experimentell studie utförd i en småskalig tvådimensionell rumsmodell med vatten som strömningsmedium kan vi logiskt dra slutsatsen att ett pulserande tilluftsflöde har en potential att förbättra omblandningen.  I en fortsatt studie i avhandlingen visuliserades och mättes hastighetsfältet och därefter beräknades statistiska värden av exempelvis medelhastighet, standardavvikelse och skjuvspänning hos hastighetsfluktuationerna i luftströmmen över en väggmonterad radiator med 2D-PIV-teknik.  Bakgrunden till studien är att en bidragande orsak till partikelavsättning på väggytor är turbofores som uppträder vid en turbulent luftström. Studien genomfördes genom uppbyggnad av en fullskalig rumsmodell. Eftersom turbulens spelar en roll vid partikelavsättning genom turbofores är det viktigt att identifiera var det laminära flödet över radiatorn blir turbulent. Resultaten baserat på visualisering och PIV-mätningar indikerade att, för ett rum med denna typ av radiatoruppvärmning, blev flödet över radiatorn turbulent efter en dimensionslös längd lika med 5,0‒6,25 gånger radiatorns tjocklek. Ytors egenskaper är viktiga vid partikelavsättning. Därför har de geometriska egenskaperna hos några olika metoder för ytbehandling undersökts experimentellt med hjälp av en scanner för strukturerat 3D-ljus. Resultaten visar på skillnader i ytråhet hos de olika ytbehandlingsmetoderna. För att undersöka motståndet mot luftströmning längs ytan och den turbulens som genereras av ytorna registrerade vi gränsskiktsflödet över ytorna i en speciell luftströmningsrigg. Detta påvisade att motståndet hos de olika typerna av ytbehandlingsmetoder skilde sig mycket litet åt och därför är troligt vid deras påverkan på depositionshastigheten mycket liten. / <p>QC 20150525</p>
18

Développement de techniques optiques pour la caractérisation de brouillards de gouttes dans les foyers aéronautiques / Development of optical techniques to characterize droplet sprays in aeronautical combustion chambers

Brettar, Jonathan 17 December 2015 (has links)
L’optimisation des chambres de combustion est généralement réalisée à l'aide d’outils desimulation numérique. Lorsque le carburant est injecté sous forme liquide, la qualité des simulationsdépend en partie de la définition des conditions aux limites imposées pour cette phase à proximité del'injecteur (diamètre, vitesse et flux volumique des gouttes, vitesse de glissement entre phases). Cesconditions aux limites sont généralement définies à partir d'une analyse expérimentale dans desconditions réalistes d’injection, qui fait appel, dans le meilleur des cas, à l’utilisation del’Anémogranulomètre Phase Doppler (PDA). Cependant, cette technique ponctuelle est coûteuse entemps pour une caractérisation globale de l’injecteur et fournit une mesure des flux volumiques avecdes limitations. Il est également difficile d’accéder à des grandeurs telles que la vitesse de la phasegazeuse en présence des gouttes. Pour répondre à cette problématique, il paraît judicieux de mettre enœuvre des techniques de diagnostic optique spatialement résolues. Cette étude consiste à développer des techniques optiques de champ couplant des approches basées sur la diffusion de Mie, sur l'émission fluorescente des gouttes ou de traceurs et utilisant des algorithmes de type PIV, pour caractériser de manière simultanée et quantitative la granulométrie, la vitesse et le flux volumique de la phase dispersée, ainsi que la vitesse de la phase continue dans les brouillards de gouttes au sein d’une configuration réaliste de foyer aéronautique. Une attentionparticulière est portée à l'étude de la précision de la mesure. Ainsi, des comparaisons sont effectuéesavec des bases de données complètes obtenues à l’aide du PDA. L'analyse de ces résultats estconfrontée aux modèles de l'optique physique régissant les phénomènes de fluorescence et dediffusion de la lumière par des particules à l’aide de simulations. Cette démarche nous permetd'interpréter efficacement les résultats obtenus par imagerie directe et de définir les paramètresd'acquisition et de traitement assurant une précision optimale des mesures. / The optimization of combustion chambers is generally carried out using numerical simulation tools.When fuel is injected in liquid form, the simulation quality depends on the boundary conditionsimposed to this phase close to the injector (diameter, velocity and volume flux of the droplets, slipvelocity between phases). These boundary conditions are usually set from an experimental analysisunder realistic conditions of injection, which in the best case uses Phase Doppler Anemo-granulometry(PDA). However, this point measurement technique is time consuming for an overall injectorcharacterization and provides a measurement of the volume flux with some limitations. It is alsodifficult to access variables such as the velocity of the gas phase in the presence of droplets. Toaddress this problem, it seems appropriate to implement spatially resolved optical diagnostictechniques. This study consists in the development of optical field techniques which combine approaches based onMie scattering, fluorescent emission from droplets or tracers and use PIV algorithms to characterizesimultaneously and quantitatively size, velocity and volume flux of the dispersed phase, and velocityof the continuous phase in droplet sprays in a realistic configuration of aeronautical injector. Aparticular attention is given to the study of the measurement accuracy. Thus, comparisons are carriedout with complete databases obtained with the PDA. The analysis of these results is faced withphysical optics models governing phenomena of fluorescence and light scattering by particles usingsimulations. This approach allows us to effectively interpret the results obtained by direct imaging anddefine acquisition and processing parameters ensuring optimum accuracy.
19

Contrôle d'écoulement interne au moyen d'actionneur ElectroHydroDynamique / Flow control using ElectroHydroDynamic actuators in a dielectric liquid

Gouriou, Clément 15 December 2017 (has links)
Ce travail présente les résultats de recherches sur le contrôle d'écoulement dans les liquides diélectriques. L'objectif est d'étudier les potentialités du contrôle d'écoulement au moyen d'actionneurs ElectroHydroDynamiques. La 1re partie de cette thèse est notamment consacrée à l'étude bibliographique générale du contrôle d'écoulement et des techniques disponibles pour la mesure de vitesse de fluide. La méthode PIV est choisie pour caractériser l'écoulement de panache chargé. Cependant la présence d'un champ électrique intense dans un liquide diélectrique remet potentiellement en question l'hypothèse selon laquelle les traceurs suivent fidèlement les mouvements du liquide. Des études théorique et expérimentale permettent de préciser les conditions d'un traceur idéal et de choisir le meilleur type d'ensemencement pour l'huile de silicone. La 2nde partie de ce travail est consacrée à l'étude du contrôle d'écoulement sur un profil d'aile NACA0015 à ultra-bas Reynolds (Re < 5000). Une étude bibliographique présente les stratégies de contrôle d'écoulement autour de profil d'aile ainsi que les types d'actionneurs EHD appliqués aux liquides diélectriques. L'écoulement naturel en champ de vitesse moyen puis instationnaire est caractérisé et comparé à l'écoulement contrôlé. Le calcul de la force à partir d'un bilan de quantité de mouvement (Navier-Stokes), permet d'estimer les efforts hydrodynamiques appliqués par le fluide sur le profil immergé. Des polaires de portance et de traînée sont obtenues et permettent de quantifier l'efficacité de l'actionneur EHD. Enfin, les mécanismes de contrôle sont précisés et mettent en lumière les potentiels et les limites de l'actionneur. / This work presents results of research on flow control in a dielectric liquid. The aim is to demonstrate our ability to control flow by means of ElectroHydroDynamic actuation. The first part of this PhD thesis is dedicated to a general overview of flow control and the methods available for measuring fluid velocity. The PIV method is selected to charaterize the flow of a charged plume. However, the presence of a high electric field in the dielectric liquid might bring into question the validity of using PIV, which is based on the fact that tracers accurately follow fluid movement. Theoretical and experimental studies were performed to find the proper conditions for using an ideal tracer that guarantees the accuracy of velocity measurements. This part enables us to choose the best seeding particle in silicone oil. The second part of this work is devoted to the study of flow control on a NACA0015 wing profile at ultra-low Reynolds numbers (Re < 5000). A bibliographic study presents strategies of flow control around wing profiles and in addition deals with different EHD actuators for dielectric liquids. Mean velocity fields and unsteady velocity fields of baseline flow are characterized and compared to controlled flow. The calculation of force based on the conservation of momentum (Navier-Stokes equations) enables us to estimate the hydrodynamic stresses applied by the fluid to the immersed profile. Lift and drag polarities are obtained to quantify the efficiency of the EHD actuator. Finally, the mechanisms of control are clarified and highlight the potential and limits of the EHD actuator for flow control applications.
20

Experimental study of turbulent flow with dispersed rod-like particles through optical measurements

Abbasi Hoseini, Afshin January 2014 (has links)
The knowledge of the behavior of non-spherical particles suspended in turbulent flows covers a wide range of applications in engineering and science. Dispersed two-phase flows and turbulence are the most challenging subjects in engineering, and when combined it gives rise to more complexities as the result of the inherent stochastic nature of the turbulence of the carrier-phase together with the random distribution of the dispersed phase. Moreover, for anisotropic particles the coupling between the translation and rotation of particle increases the complication. Because of the practical importance of prolate particleladen turbulent flows, the plenty of numerical and experimental works have been conducted to study such suspensions. Numerical approaches have given valuable insight of turbulent suspension flows, although the computation has been only carried out at the macro scale and models, not including flow distortion around the particle, comprise the detail of the flow in the order of a particle size. In addition, the model of the forces imposed on the particle by the fluid and mass point treatment are strictly valid for infinitely small particle having size less than all scales of the fluid turbulence. Fully resolved solution at the scale of the dispersed phase in turbulent flows for high Reynolds number has been recently performed but is still a challenge. On the other hand, the presence of particle as the dispersed phase makes experimental measurements much more complicated than those with single phase as a result of particles interference. The area of considerable difficulty with this type of experiments is the measurement of the fluid-phase velocity remarkably close to the particle surface. Generally, experimental researches have been concentrated on measuring the mean velocity and Reynolds stresses of the carrier-phase, and the mean velocity, fluctuations, orientation and accumulation of the non-spherical particles. Higher-order quantities, including Lagrangian particle velocity correlations, the carrier-phase turbulence modulation, and two-particle and particlefluid velocity correlations are also of interest. It has been found that the rotational and translational movements of the fibershaped particle depend on the nature of carrier-phase field and fiber characteristics such as aspect ratio, fiber Stokes number, fiber Reynolds number, and the ratio of fiber to flow length scale. With the development of PIV (Particle Image Velocimetry) and PTV (Particle Tracking Velocimetry) techniques, it has been appeared that combined PIV/PTV will be the best available choice for the experimental study of dispersed two-phase flows. The purpose of combined PIV/PTV measurement of two-phase systems is simultaneous measurements of fluid and suspended objects, where the PIV measurement of the fluid phase are combined with PTV measurement of the dispersed phase. The objective of this doctoral thesis is to study the behavior of rod-like particles suspended in wall-bounded turbulent flow through simultaneous PIV/PTV measurements of the velocity of the flow field and particle motion. As a representative of rod-like particles, I have employed cellulose acetate fibers with the length to diameter ratio (aspect ratio) larger than one. Here, It has been considered only dilute suspensions with no flocculation; thus fiber-fiber interaction is negligible. The measurements have been conducted within the parallel planes (2D view) illuminated by laser in the streamwise direction in thin film suspension flowing on the water table setup at Linné FLOW Centre, KTH Mechanics Lab. It is shown that this setup is a well-behaved experimental model of half channel flows often used in Direct Numerical Simulation (DNS) investigations. Therefore, the experimental results are comparable to their DNS counterpart where it is convenient. A single camera PIV technique has been used to measure flowing suspension. Therefore, it has been needed to preprocess images using a spatial median filter to separate images of two phases, tracer particles as representative of fluid and fibers suspended. The well-known PIV processing algorithms have been applied to the phase of fluid. I have also introduced a novel algorithm to recognize and match fibers in consecutive images to track fibers and estimate their velocity. It is not feasible to study all relevant aspects of particle-laden turbulent flows in a single study. In this study, I present the statistics of the rotational and translational motion of fiber-like particles and the surrounding fluid velocity. To the author’s knowledge, remarkably little experimental work has been published to date on simultaneous measurement of fiber motion and turbulence field in a turbulent fiber suspension flow to reveal dynamics of fibers in this regime. Therefore, the results of this work will be profitable in better understanding of such multiphase flows. The statistical analysis of the translational motion of fibers shows that the size of fiber is a significant factor for the dynamical behavior of the fiber near the wall. It has been observed that, in the region near the wall, the probability of presence of the long fibers is high in both the high-speed and low-speed streaks of flow, and the mean velocity of fibers almost conforms to the mean velocity of flow; whereas the short fibers are mostly present in the low-speed areas, and the fiber mean velocity obey the dominant flow velocity in these areas. In the far-wall regions, the translation of fibers is practically unaffected by the aspect ratio, whereas it depends crucially on the wall-normal distance. Moreover, it was found that in the case of long fibers near the wall, the low speed fibers mostly are orientated in streamwise direction. On the other hand, there is no preferential orientation for fast long fibers. Although wall-normal velocities were not measured in this study, it is hypothesized that this behavior is a result of fibers being affected by the sweep and ejection events known to occur in wall-bounded turbulent flow. The fast fibers are in sweep environment and comes from the upper layer. The low speed fibers are into ejection areas in the vicinity of the wall, and the wall has a stabilizing effect on them. The short fibers are still oriented mostly in streamwise direction for a certain range of low velocity. Furthermore, since a considerable change of the fiber behavior is observed in a certain ratio of the fiber length to the fiber distance from the solid wall, it is supposed that this ratio is also a prominent parameter for the behavior of fiber near the wall. The results presented are in terms of viscous wall units wherever are denoted by superscript “+”.

Page generated in 0.0586 seconds