• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 15
  • 5
  • 1
  • Tagged with
  • 52
  • 52
  • 52
  • 52
  • 22
  • 16
  • 12
  • 11
  • 10
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Settlement Behavior of a Sandy Loam Due to Suction Changes Associated with Simulated Artificial Tree Roots

Areghan, Joseph I 19 November 2012 (has links)
Shallow foundations rested on Leda clay that are widely distributed in Eastern Canada exhibit shrinkage characteristics and are prone to differential settlements. Due to this reason, significant repairs are necessary to the foundations and basements of residential structures constructed in Leda clay deposits. Differential settlements are commonly attributed to the changes in the natural water content of soils associated with water infiltration, evaporation or plant transpiration (i.e., tree-roots-suction). Various research studies have been undertaken to estimate the possible settlements of shallow foundations associated with the water infiltration or evaporation. Several thumb rules have been proposed through research studies, providing recommendations with respect to the distance at which trees must be planted as a function of their heights at maturity such that differential settlements can be avoided. However, limited studies have been carried out to estimate or model the settlements of shallow foundations taking into account the influence of tree-roots-suction. In the present research program, a comprehensive experimental study regarding the deformation characteristics of a sandy loam soil from Ottawa due to tree-root-suction is undertaken, using specially designed equipment. The study has been undertaken using a sandy loam soil so that the testing program can be conducted in a shorter period of time. An artificial rooting system (ARS) was designed and placed in a specially designed tank at the University of Ottawa to simulate tree-roots-suction and measure soil surface settlements associated with a decrease in natural water content (or increase in soil suction) using particle image velocimetry (PIV) technique. The ARS consists of an artificial root, suction generator, matric suction and volumetric water content monitoring devices. The variation of matric suction and volumetric water content are monitored at various depths using the instrumentation of the ARS. Based on the results of the experimental studies, a methodology is proposed to model the settlement behaviour of sandy loam soils due to suction from ARS, using commercial finite element software, SEEP/W and SIGMA/W (i.e. software package of GeoStudio 2007). The study offers a reasonably good comparison between the measured surface settlements and those estimated using the finite element modelling analysis. The modelling methodology presented in this thesis is promising and may be extended for estimating the settlement behaviour associated with the tree roots suction of Leda clay deposits and to other soils.
22

Settlement Behavior of a Sandy Loam Due to Suction Changes Associated with Simulated Artificial Tree Roots

Areghan, Joseph I 19 November 2012 (has links)
Shallow foundations rested on Leda clay that are widely distributed in Eastern Canada exhibit shrinkage characteristics and are prone to differential settlements. Due to this reason, significant repairs are necessary to the foundations and basements of residential structures constructed in Leda clay deposits. Differential settlements are commonly attributed to the changes in the natural water content of soils associated with water infiltration, evaporation or plant transpiration (i.e., tree-roots-suction). Various research studies have been undertaken to estimate the possible settlements of shallow foundations associated with the water infiltration or evaporation. Several thumb rules have been proposed through research studies, providing recommendations with respect to the distance at which trees must be planted as a function of their heights at maturity such that differential settlements can be avoided. However, limited studies have been carried out to estimate or model the settlements of shallow foundations taking into account the influence of tree-roots-suction. In the present research program, a comprehensive experimental study regarding the deformation characteristics of a sandy loam soil from Ottawa due to tree-root-suction is undertaken, using specially designed equipment. The study has been undertaken using a sandy loam soil so that the testing program can be conducted in a shorter period of time. An artificial rooting system (ARS) was designed and placed in a specially designed tank at the University of Ottawa to simulate tree-roots-suction and measure soil surface settlements associated with a decrease in natural water content (or increase in soil suction) using particle image velocimetry (PIV) technique. The ARS consists of an artificial root, suction generator, matric suction and volumetric water content monitoring devices. The variation of matric suction and volumetric water content are monitored at various depths using the instrumentation of the ARS. Based on the results of the experimental studies, a methodology is proposed to model the settlement behaviour of sandy loam soils due to suction from ARS, using commercial finite element software, SEEP/W and SIGMA/W (i.e. software package of GeoStudio 2007). The study offers a reasonably good comparison between the measured surface settlements and those estimated using the finite element modelling analysis. The modelling methodology presented in this thesis is promising and may be extended for estimating the settlement behaviour associated with the tree roots suction of Leda clay deposits and to other soils.
23

Ecological engines: Finescale hydrodynamic and chemical cues, zooplankton behavior, and implications for nearshore marine ecosystems

True, Aaron Conway 21 September 2015 (has links)
Ephemeral patches of hydrodynamic and chemical sensory cues at fine scales are fundamentally important to the life success of plankton populations and thus the overall health and vitality of nearshore marine ecosystems. We employed various tools from experimental fluid mechanics to create ecologically-relevant hydrodynamic and chemical conditions in a recirculating flume system for zooplankton behavioral assays. The goal was to quantify and correlate changes in zooplankton behavior with coincident sensory cues. A laminar, planar free jet (the Bickley jet) was used to create finescale, free shear layers with targeted hydrodynamic characteristics as well as finescale, sharp-edged layers of both beneficial and toxic ("red tide") phytoplankton species. Planar particle image velocimetry (PIV) and laser-induced fluorescence (LIF) were used to quantify the flow and concentration fields, respectively. Behavioral assays with a variety of crustacean zooplankton species including Antarctic krill (Euphausia superba), estuarine crab larvae (Panopeus herbstii), and calanoid copepods (Temora longicornis and Acartia tonsa), each unique in its ecology, morphology, and life history, show clear and statistically-significant behavioral responses to relevant hydrodynamic and chemical cues. Estuarine crab larvae optimize short term and long term behavioral needs (foraging and habitat selection) by sensing and exploiting the information contained in multi-directional free shear flows. In the presence of thin layers of toxic algal exudates (Karenia brevis), T. longicornis and A. tonsa exhibit explicit avoidance behaviors through significant increases in swimming speed and overall behavioral variability resulting in a conspicuous hydrodynamic signature in a risk/benefit behavioral response. Finally, Antarctic krill exploit the hydrodynamic cues contained in a free shear layer to modify swimming behaviors and ultimately graze in a thin phytoplankton layer (Tetraselmis spp.). Each species is able to sense and exploit the information contained in coherent hydrodynamic and chemical sensory cues to change swimming kinematics and alter macroscale trajectory characteristics. Quantifying changes in zooplankton behavior in response to ecologically-relevant sensory cues is a crucial step towards modeling (e.g. via biophysically-coupled individual-based ecosystem models) and managing sustainable marine fisheries.
24

Experimental and numerical study of flow distribution in compact plate heat exchangers

Galati, Chiara 13 December 2017 (has links) (PDF)
This PhD work was motivated by the CEA R&D program to provide solid technological basis for the use of Brayton power conversion system in Sodium-cooled Fast nuclear Reactors (SFRs). Multi-channel compact heat exchangers are necessary for the present application because of the low heat transfer capacity of the gas foreseen. In ASTRID project, a minimum size of Na channels section is required to avoid the plugging risk. However, this induces very low pressure losses in the bundle. Considering an additional inlet flow condition, a real risk of bad flow distribution remains. As a result, the thermal performance and thermal loading of the heat exchanger degrades due to it. The main goal of this work was to overcome the flow maldistribution problem by means of an innovative design of sodium distribution system (PATENT FR1657543), the development of a numerical strategy and the construction of an experimental database to validate all theoretical studies. The innovative sodium distribution system consists on an inlet header which tries to guide the evolution of the impinging jet flow while a system of bifurcating pre-distribution channels increases pressure drops in the bundle. Lateral communications between pre-distribution channels are introduced to further homogenize the flow. Two experimental facilities have been conceived to study the flow behavior in bifurcating channels and in the inlet header, respectively. At the same time, their effect on the flow distribution between channels is evaluated. The acquired PIV aerodynamic database allows to validate the numerical models and to prove the design basis for the proposed distribution system. Once having validated the CFD turbulence models and the strategy to study the flow maldistribution in the SGHE module, a decisive and trustworthy optimization of each component of the sodium distribution system has been performed. Finally, an optimal configuration has been proposed for the actual phase of ASTRID project.
25

Settlement Behavior of a Sandy Loam Due to Suction Changes Associated with Simulated Artificial Tree Roots

Areghan, Joseph I January 2012 (has links)
Shallow foundations rested on Leda clay that are widely distributed in Eastern Canada exhibit shrinkage characteristics and are prone to differential settlements. Due to this reason, significant repairs are necessary to the foundations and basements of residential structures constructed in Leda clay deposits. Differential settlements are commonly attributed to the changes in the natural water content of soils associated with water infiltration, evaporation or plant transpiration (i.e., tree-roots-suction). Various research studies have been undertaken to estimate the possible settlements of shallow foundations associated with the water infiltration or evaporation. Several thumb rules have been proposed through research studies, providing recommendations with respect to the distance at which trees must be planted as a function of their heights at maturity such that differential settlements can be avoided. However, limited studies have been carried out to estimate or model the settlements of shallow foundations taking into account the influence of tree-roots-suction. In the present research program, a comprehensive experimental study regarding the deformation characteristics of a sandy loam soil from Ottawa due to tree-root-suction is undertaken, using specially designed equipment. The study has been undertaken using a sandy loam soil so that the testing program can be conducted in a shorter period of time. An artificial rooting system (ARS) was designed and placed in a specially designed tank at the University of Ottawa to simulate tree-roots-suction and measure soil surface settlements associated with a decrease in natural water content (or increase in soil suction) using particle image velocimetry (PIV) technique. The ARS consists of an artificial root, suction generator, matric suction and volumetric water content monitoring devices. The variation of matric suction and volumetric water content are monitored at various depths using the instrumentation of the ARS. Based on the results of the experimental studies, a methodology is proposed to model the settlement behaviour of sandy loam soils due to suction from ARS, using commercial finite element software, SEEP/W and SIGMA/W (i.e. software package of GeoStudio 2007). The study offers a reasonably good comparison between the measured surface settlements and those estimated using the finite element modelling analysis. The modelling methodology presented in this thesis is promising and may be extended for estimating the settlement behaviour associated with the tree roots suction of Leda clay deposits and to other soils.
26

Investigation of the Flowfield Surrounding Small Photodriven Flapping Wings

Bani Younes, Ahmad Hani 19 August 2009 (has links)
No description available.
27

Numerical and experimental studies of shallow cone penetration in clay

Hazell, Edmund January 2008 (has links)
The fall-cone test is widely used in geotechnical practice to obtain rapid estimates of the undrained shear strength of cohesive soil, and as an index test to determine the liquid limit. This thesis is concerned with numerical modelling of the penetration of solids by conical indenters, and with interpretation of the numerical results in the context of the fall-cone test. Experimental studies of shallow cone penetration in clay are also reported, with the aim of verifying the numerical predictions. The practical significance of the results, in terms of the interpretation of fall-cone test results, is assessed. Results are reported from finite element analyses with the commercial codes ELFEN and Abaqus, in which an explicit dynamic approach was adopted for analysis of continuous cone indentation. Quasi-static analyses using an elastoplastic Tresca material model are used to obtain bearing capacity factors for shallow cone penetration, taking account of the material displaced, for various cone apex angles and adhesion factors. Further analyses are reported in which a simple extension of the Tresca material model, implemented as a user-defined material subroutine for Abaqus, is used to simulate viscous rate effects (known to be important in cohesive soils). Some analyses with the rate-dependent model are displacement-controlled, while others model the effect of rate-dependence on the dynamics of freefall cone indentation tests. Laboratory measurements of the forces required to indent clay samples in the laboratory are reported. Results from displacement-controlled tests with imposed step-changes in cone speed, and from freefall tests, confirm that the numerical rate-dependent strength model represents the observed behaviour well. Some results from experiments to observe plastic flow around conical indenters are also presented. Finally, additional numerical analyses are presented in which a critical state model of clay plasticity is used to study the variation of effective stress, strain and pore pressure around cones in indentation tests at various speeds.
28

CHARACTERIZATION OF SECONDARY ATOMIZATION AT HIGH OHNESORGE NUMBERS

Vishnu Radhakrishna (5930801) 16 January 2019 (has links)
<p>A droplet subjected to external aerodynamic disturbances disintegrates into smaller droplets and is known as secondary atomization. Droplet breakup has been studied for low Ohnesorge (<b><i>Oh < </i></b>0.1) numbers and good agreement has been seen amongst researchers. However, when it comes to cases with high the <b><i>Oh</i></b> number, i.e. atomization where the influence of viscosity is significant, very little data is available in the literature and poor agreement is seen amongst researchers. </p> <p> </p> <p>This thesis presents a complete analysis of the modes of deformation and breakup exhibited by a droplet subjected to continuous air flow. New modes of breakup have been introduced and an intermediate case with no droplet fragmentation has been discovered. Further, results are presented for droplet size-velocity distributions. In addition, Digital in-line holography (DIH) was utilized to quantify the size-velocity pdfs using a hybrid algorithm. Finally, particle image velocimetry (PIV) was employed to characterize the air flow in the unique cases where drops exhibited no breakup and cases with multiple bag formation. </p> <p> </p> <p>A droplet subjected to external aerodynamic disturbances disintegrates into smaller droplets and is known as secondary atomization. Secondary breakup finds relevance is almost every industry that utilizes sprays for their application. </p> <p> </p>
29

Contribution à la compréhension et à la maîtrise du procédé d'atomisation de jets métalliques liquides / Contribution to the understanding and control of the process of liquid metal atomization jets

Khatim, Othmane 22 July 2011 (has links)
La demande croissante de poudres d‟alliages métalliques aux propriétés spécifiques utilisées en particulier en projection thermique et fabrication rapide pousse les chercheurs à améliorer et à optimiser sans cesse les procédés de production de ces poudres. L‟objectif affiché sur ces procédés est de maîtriser à la fois morphologie/ distribution de taille des particules produites et coût de fabrication. Actuellement, la majorité de ces poudres est produite par des procédés d‟atomisation par fluide et essentiellement par le procédé d‟atomisation gazeuse. Parmi ces procédés, le procédé Nanoval utilisant une buse «De Laval» est l‟un des plus performants en termes de distribution granulométrique et de rendement.L‟objectif principal de ce travail de thèse vise à améliorer la compréhension des phénomènes physiques mis en jeu par le procédé Nanoval afin d‟en optimiser le fonctionnement. Deux approches composent ce travail :- une partie numérique de modélisation sous Fluent. Deux modèles ont été étudiés, un modèle monophasique relatif à l‟écoulement gazeux dans l‟unité d‟atomisation (passage de l‟autoclave à la chambre d‟atomisation) et un modèle diphasique relatif à la constriction du filament de métal liquide en sortie de buse de coulée. Cette étude numérique a permis de mettre en évidence l‟effet des paramètres opératoires tels que la pression d‟atomisation et le diamètre de la buse de coulée sur la dynamique du jet de gaz, sur la striction du filament de métal liquide ainsi que les zones de forte pression et de haute vitesse avant, pendant et après la désintégration du filament métallique.- une partie expérimentale pour laquelle la mise en place d‟outils de diagnostic in–situ a été nécessaire pour la caractérisation du procédé en cours de fonctionnement. Trois analyses ont été conduites. La première renseigne de la dynamique du jet d‟atomisation évaluée à partir de mesures de Vélocimétrie par Images de Particules (PIV) à proximité de la sortie de la buse De Laval. La deuxième concerne les caractéristiques à l‟écrasement des particules sur un substrat placé dans la chambre d‟atomisation. La troisième et dernière analyse porte sur les propriétés des particules produites et la comparaison avec la matière récupérée après refroidissement dans l‟autoclave. Différents paramètres opératoires ont été explorés (pression d‟atomisation, diamètre de la buse de coulée, pression dans la chambre d‟atomisation, nature du métal) et reliés à leur influence sur la vitesse et le diamètre des particules. Des relations directes entre les résultats de ces trois analyses ont pu être démontrées ainsi qu‟une bonne adéquation entre résultats expérimentaux et résultats issus de la modélisation. / The growing demand for metal alloy powders with specific properties used in thermal spray application and rapid manufacturing encourages researchers to improve and optimize their manufacturing processes. The aim of these processes is to master both morphology/particle size distribution and manufacturing cost. Today the vast majority of powders are produced by fluid atomization and mainly gas atomization process. Among them, the Nanoval process, consisting of a De Laval nozzle is one of the most outstanding process in terms of granulometric distribution and output.The main objective of this thesis is to improve the understanding of the physical phenomena occurring in the Nanoval process to optimize the way it operates. Two approaches will be developed:- A numerical study using Fluent. The two following models were studied, one monophasic concerning gas flow in the atomization unit form autoclave to atomization chamber and the other, a diphasic model concerning the finest part of the filament in the exit of the melt nozzle. This numerical study has highlighted the effect of parameters such as atomization pressure, nozzle diameter on the gas dynamics, fine filament, high-pressure and high speed areas before, during the process and after the disintegration of the metallic filament.- And an experimental study which required the implementation of the in-situ diagnosticTools to characterize the process under working conditions. Three analyses were carried out. The first concerns the dynamics of the atomization jet from Velocimetry measures by Particle Image Velocimetry (PIV) close to De Laval nozzle exit. The second deals with the characteristics obtained when particles impact the substrate in the atomization chamber. The third describes the particle properties and deals with the comparison with the matter in the autoclave after cooling process. Different operating parameters were explored (atomization pressure, melt nozzle diameter, pressure in the atomization chamber, nature of metal) and linked to their influence on the particle velocity and diameter. Narrow links between the analysis results were demonstrated as well as a good adequacy between experimental and modeling results.
30

Dynamical Modeling Of The Flow Over Flapping Wing By Applying Proper Orthogonal Decomposition And System Identification

Durmaz, Oguz 01 September 2011 (has links) (PDF)
In this study the dynamical modeling of the unsteady flow over a flapping wing is considered. The technique is based on collecting instantaneous velocity field data of the flow using Particle Image Velocimetry (PIV), applying image processing to these snapshots to locate the airfoil, filling the airfoil and its surface with proper velocity data, applying Proper Orthogonal Decomposition (POD) to these post-processed images to compute the POD modes and time coefficients, and finally fitting a discrete time state space dynamical model to the trajectories of the time coefficients using subspace system identification (N4SID). The procedure is applied using MATLAB for the data obtained from NACA 0012, SD 7003, elliptic airfoil and flat plate, and the results show that the dynamical model obtained can represent the flow dynamics with acceptable accuracy.

Page generated in 0.0779 seconds