Spelling suggestions: "subject:"1article size."" "subject:"1article vize.""
171 |
Physical and Chemical Aspects of Radiation Induced Oxidative Dissolution of UO<sub>2</sub>Roth, Olivia January 2006 (has links)
<p>Denna licensiatavhandling behandlar oxidativ upplösning av UO2. Upplösning av UO2 studeras huvudsakligen då UO2-matrisen hos använt kärnbränsle förväntas fungera som en barriär mot frigörande av radionuklider i ett framtida djupförvar. Lösligheten av U(IV) är mycket låg under i djupförvaret rådande förhållanden emedan U(VI) har betydligt högre löslighet. Oxidation av UO2-matrisen kommer därför att påverka dess löslighet och därmed dess funktion som barriär. I denna avhandling studeras den relativa effektiviteten av en- och två-elektronoxidanter för upplösning av UO2. Vid låga oxidantkoncentrationer är utbytet för upplösningen för en-elektronoxidanter signifikant lägre än för två-elektronoxidanter. För en-elektronoxidanter ökar dock utbytet med ökande oxidanthalt, vilket kan förklaras av den ökade sannolikheten för två konsekutiva en-elektronoxidationer av samma reaktionssite och den ökade möjligheten till disproportionering.</p><p>Radikaler och molekylära radiolysprodukters relativa inverkan på oxidativ upplösning av UO2 studeras också i denna avhandling genom mätning av mängden upplöst U(VI) i γ-bestrålade system som dominerades av olika oxidanter. Dessa studier visade att upplösningshastigheten av UO2 kan uppskattas från oxidantkoncentrationer framtagna genom simuleringar av radiolys i motsvarande homogena system och hastighetskonstanterna för ytreaktionerna. Simuleringarna visar att de molekylära oxidanterna kommer vara de viktigaste oxidanterna i alla system i denna studie vid långa bestrålningstider (>10 timmar). Vid liknande simuleringar av α-bestrålade system fanns att vid förhållanden relevanta för ett djupförvar för använt kärnbränsle, är det endast de molekylära oxidanterna (i huvudsak H2O2) som är av betydelse för upplösningen av bränslematrisen.</p><p>Då använt kärnbränsle innehåller en mängd radionuklider som utsätter UO2-matrisen för kontinuerlig bestrålning, är det av vikt att undersöka hur bestrålning påverkar reaktiviteten av UO2. Bestrålningseffekten på reaktionen mellan UO2 och MnO4- studerades. Dessa försök visade att bestrålning av UO2 vid doser >40 kGy leder till att reaktiviteten ökar upp till 1.3 gånger reaktiviteten av obestrålad UO2. Den ökade reaktiviteten kvarstår efter bestrålningen och effekten kan därför möjligen tillskrivas permanenta förändringar i materialet. Vid uppskattning av reaktiviteten hos använt kärnbränsle måste hänsyn tas till denna effekt då bränslet redan efter ett par dagar i reaktor blivit utsatt för doser >40 kGy.</p><p>Det har tidigare föreslagits att hastigheten för en heterogen västka/fast-fas reaktion är beroende av partikelstorleken hos det fasta materialet, vilket har studerats för UO2-partiklar i denna avhandling. Experimentellt bestämda kinetiska parametrar jämförs med de föreslagna ekvationerna för fyra storleksfraktioner av UO2-pulver och en UO2-pellet. Studien visade partikelstorleksberoendet av andra ordningens hastighetskonstant och aktiveringsenergin för oxidation av UO2 med MnO4- beskrivs relativt väl av de föreslagna ekvationerna.</p> / <p>The general subject of this thesis is oxidative dissolution of UO<sub>2</sub>. The dissolution of UO<sub>2</sub> is mainly investigated because of the importance of the UO<sub>2</sub> matrix of spent nuclear fuel as a barrier against radionuclide release in a future deep repository. U(IV) is extremely insoluble under the reducing conditions prevalent in a deep repository, whereas U(VI) is more soluble. Hence, oxidation of the UO<sub>2</sub>-matrix will affect its solubility and thereby its function as a barrier. In this thesis the relative efficiency of one- and two electron oxidants in dissolving UO<sub>2 </sub>is studied. The oxidative dissolution yield of UO<sub>2 </sub>was found to differ between one- and two-electron oxidants. At low oxidant concentrations the dissolution yields for one-electron oxidants are significantly lower than for two-electron oxidants. However, the dissolution yield for one-electron oxidants increases with increasing oxidant concentration, which could be rationalized by the increased probability for two consecutive one-electron oxidations at the same site and the increased possibility for disproportionation.</p><p>Furthermore, the relative impact of radical and molecular radiolysis products on oxidative dissolution of UO<sub>2 </sub>is investigated. Experiments were performed where the amount of dissolved U(VI) was measured in γ-irradiated systems dominated by different oxidants. We have found that the UO<sub>2 </sub>dissolution rate in systems exposed to γ-irradiation can be estimated from oxidant concentrations derived from simulations of radiolysis in the corresponding homogeneous systems and rate constants for the surface reactions. These simulations show that for all systems studied in this work, the molecular oxidants will be the most important oxidants for long irradiation times (>10 hours). Similar simulations of α-irradiated systems show that in systems relevant for a deep repository for spent nuclear fuel, only the molecular oxidants (mainly H<sub>2</sub>O<sub>2</sub>) are of importance for the dissolution of the fuel matrix.</p><p>The effect on UO<sub>2</sub> reactivity by irradiation of the material is of importance when predicting the spent fuel dissolution rate since the fuel, due to its content of radionuclides, is exposed to continuous self-irradiation. The effect of irradiation on the reaction between solid UO<sub>2 </sub>and MnO<sub>4</sub><sup>-</sup> in aqueous solutions was studied. It was found that irradiation of UO2 at doses >40 kGy increases the reactivity of the material up to ~1.3 times the reactivity of unirradiated UO<sub>2</sub>. The increased reactivity remains after the irradiation and can possibly be attributed to permanent changes in the material. This issue must be taken into account when predicting the reactivity of spent nuclear fuel since the fuel is exposed to doses >40 kGy after only a few days in the reactor.</p><p>It has earlier been suggested that the rate of a heterogeneous liquid-solid reaction depends on the size of the solid particles. This was investigated for UO<sub>2 </sub>particles in this thesis. Experimental kinetic parameters are compared to the previously proposed equations for UO<sub>2</sub> powder of four size fractions and a UO<sub>2</sub> pellet. We have found that the particle size dependence of the second order rate constant and activation energy for oxidation of UO<sub>2</sub> by MnO<sub>4</sub><sup>-</sup> is described quite well by the proposed equations.</p>
|
172 |
The Effects of Mixing Variables on Settling Rates and Particle Size Distribution of Dicalcium Phosphate Made by the Hydrolysis of Monocalcium PhosphateDokken, Marvin Noble 01 August 1942 (has links)
Summary: A process is under investigation for the manufacture of dicalcium phosphate by the hydrolosis of concentrated superphosphate containing recycled monocalcium phosphate. The hydrolysis also results in the formation of an aqueous solution of monocalcium phosphate and free phosphoric acid. The phases are separated, followed by washing and drying of the solid dicalcium phosphate. The wash water is used in the hydrolyzer. The solution is returned to the superphosphate production step, where phosphate rock and additional phosphoric acid are added, and where water is evaporated to form the solid superphosphate.Pilot plant results have indicated that filtration rates vary widely under almost identical mixing conditions, presumably due to variations in particle size ranges. It was thought worthwhile, therefore, to study the effects of different mixing variables on the relative particle sizes as indicated by the settling rates of the mixture.
|
173 |
Charakterisierung von Aerosolpartikeln aus der Landwirtschaft /Schneider, Friedhelm. January 2005 (has links)
Disputats. Universität Hohenheim, 2005.
|
174 |
Effect of Cement Chemistry and Properties on Activation EnergyBien-Aime, Andre J. 01 January 2013 (has links)
The objective of this work is to examine the effect of cement chemistry and physical properties on activation energy. Research efforts indicated that time dependent concrete properties such as strength, heat evolution, and thermal cracking are predictable through the concept of activation energy. Equivalent age concept, which uses the activation energy is key to such predictions. Furthermore, research has shown that Portland cement concrete properties are affected by particles size distribution, Blaine fineness, mineralogy and chemical composition. In this study, four Portland cements were used to evaluate different methods of activation energy determination based on strength and heat of hydration of paste and mortar mixtures. Moreover, equivalency of activation energy determined through strength and heat of hydration is addressed. The findings indicate that activation energy determined through strength measurements cannot be used for heat of hydration prediction. Additionally, models were proposed that are capable of predicting the activation energy for heat of hydration and strength. The proposed models incorporated the effect of cement chemistry, mineralogy, and particle size distribution in predicting activation energy.
|
175 |
Permeability estimation of damaged formations near wellboreShi, Xiaoyan, 1977- 12 July 2011 (has links)
Formation damage is a common problem in petroleum reservoirs and happens in different stages of reservoir development from drilling to production. The causes of formation damage include particle invasion, formation fines migration, chemical precipitation, and pore deformation or collapse. Formation damage adversely affects productivity of wells by reducing the permeability of near wellbore region. Furthermore, formation damage also affects well logging results. Therefore, understanding the mechanism of formation damage is vital to predict the extent and severity of formation damage and to control it. This thesis is focused on the study of formation damage caused by external particle invasion. A simplified numerical method based on a commercial code PFC (Particle Flow Code) is proposed to simulate the particle invasion process. The fluid-particle interaction is simplified as hydrodynamic drag forces acted on particles by fluids; the particle-grain interaction is modeled as two rigid balls on contact. Furthermore, an pore network flow model is developed in this study to estimate permeability of damaged formations, which contain two well-separated particle sizes. The effects of the particle size and the initial formation porosity on formation damage are studied in detail. Our study shows that big particles tend to occupy the formation face, while small particles invade deep into the formation. Moreover, particles which are smaller than pore throats (entrances) impair permeability more than those bigger than pore throats. Our study also indicates that a higher initial formation porosity results in more particle invasion and permeability impairment. It is suggested that, in order to reduce formation damage, mud particle size distributions should be carefully selected according to given formation properties. Although our model has some limitations, it may serve as a tool to predict formation damage according to given parameters, and to understand the mechanism of formation damage from a micro-scopic point of view. / text
|
176 |
Theoretical and Experimental Behavior of Suspension Pressurized Metered Dose InhalersSheth, Poonam January 2014 (has links)
Pressurized metered dose inhalers (pMDIs) are widely utilized to manage diseases of the lungs, such as asthma and chronic obstructive pulmonary disease. They can be formulated such that the drug and/or nonvolatile excipients are dissolved or dispersed in the formulation, rendering a solution or suspension formulation, respectively. While the formulation process for solution pMDIs is well defined, the formulation process of pMDIs with any type of suspended entity can be lengthy and empirical. The use of suspended drug or the addition of a second drug or excipient in a suspension pMDI formulation may non-linearly impact the product performance of the drug of interest in the formulation; this requires iterative testing of a series of pMDIs in order to identify a formulation with the most potential for success. One of the primary attributes used to characterize the product performance and quality control of inhaled medications is the residual aerodynamic particle size distribution (APSD) of the aerosolized drug. Along with clinical factors, formulation and device parameters have a significant impact on APSD. In this study, a computational model was developed using the principles of statistics and physical chemistry to predict the residual APSD generated by suspension pMDIs based on formulation, device, and raw drug or excipient substance considerations. The formulations modeled and experimentally evaluated consist of a suspended drug or excipient with/without a dissolved drug or excipient in a cosolvent-propellant system. The in silico model enables modeling a process that is difficult to delineate experimentally and contributes to understanding the link between pMDI formulation and device to product performance. The ability to identify and understand the variables that affect atomization and/or aerosol disposition , such as initial droplet size, suspended micronized drug or excipient size, and drug or excipient concentration, facilitates defining the design space for suspension pMDIs during development and improves recognizing the sensitive of the APSD is on each hardware and formulation variable. This model can later be applied to limit batch-to-batch variation in the manufacturing process and selecting plausible suspension pMDI formulations with quality design as the end goal.
|
177 |
SEDIMENT CONTROL ON THE SATURATION LEVEL OF GAS HYDRATE IN NATURE ENVIRONMENTSLu, Hailong, Zeng, Huang, Ripmeester, John A., Kawasaki, Tatsuji, Fujii, Tetsuya, Nakamizu, Masaru 07 1900 (has links)
A series of studies have been carried out to elucidate the sediment effect on the saturation level of methane hydrate in sediments. The specimens tested covered most of the natural sediment types, with various combinations of particle size and mineral composition. The results obtained indicate that particle size and clay contents are the two key factors determining the saturation level of gas hydrate in sediments: the finer the particle size and/or the higher the clay content, the lower the hydrate saturation. The observed particle size effect and clay effect on hydrate saturation can be accredited to the specific surface area of a sediment.
|
178 |
Effect of Near-Wall Turbulence on Selective Removal of Particles from Sand Beds Deposited in PipelinesZeinali, Hossein Unknown Date
No description available.
|
179 |
Characterization of Athabasca asphaltenes separated physically and chemically using small-angle X-ray scatteringAmundarain, Jesus Unknown Date
No description available.
|
180 |
Yield stresses of mixtures with bimodal size distributionsRahman, Md. Hafizur Unknown Date
No description available.
|
Page generated in 0.0538 seconds