• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 14
  • 3
  • 3
  • 1
  • Tagged with
  • 83
  • 83
  • 55
  • 25
  • 21
  • 21
  • 19
  • 18
  • 14
  • 12
  • 11
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

A theoretical and numerical study of the use of grid embedded axial magnetic fields to reduce charge exchange ion induced grid erosion in electrostatic ion thrusters

Claypool, Ian Randolph 08 March 2007 (has links)
No description available.
62

Equilibrium and dynamics of collisionless current sheets

Harrison, Michael George January 2009 (has links)
In this thesis examples of translationally invariant one-dimensional (1D) Vlasov-Maxwell (VM) equilibria are investigated. The 1D VM equilibrium equations are equivalent to the motion of a pseudoparticle in a conservative pseudopotential, with the pseudopotential being proportional to one of the diagonal components of the plasma pressure tensor. A necessary condition on the pseudopotential (plasma pressure) to allow for force-free 1D VM equilibria is formulated. It is shown that linear force-free 1D VM solutions correspond to the case where the pseudopotential is an attractive central potential. The pseudopotential for the force-free Harris sheet is found and a Fourier transform method is used to find the corresponding distribution function. The solution is extended to include a family of equilibria that describe the transition between the Harris sheet and the force-free Harris sheet. These equilibria are used in 2.5D particle-in-cell simulations of magnetic reconnection. The structure of the diffusion region is compared for simulations starting from anti-parallel magnetic field configurations with different strengths of guide field and self-consistent linear and non-linear force-free magnetic fields. It is shown that gradients of off-diagonal components of the electron pressure tensor are the dominant terms that give rise to the reconnection electric field. The typical scale length of the electron pressure tensor components in the weak guide field case is of the order of the electron bounce widths in a field reversal. In the strong guide field case the scale length reduces to the electron Larmor radius in the guide magnetic field.
63

Aplikace metod počítačové fyziky při studiu interakce plazmatu s pevnými látkami / Application of methods of computational physics for the study of plasma-solid interaction

Hromádka, Jakub January 2013 (has links)
Low-temperature plasma and its interaction with immersed solids is studied in this work. The research of the physical processes on this interface is performed by two-dimensional particle computer model. The model uses molecular dynamic method. Mutual forces between particles are computed by Particle- in-Cell method. The main application of the model is in the area of the probe diagnostic of plasma. Simple problems are compared with theory and two dimensional effects are discused. Contribution of particle modeling to plasma research is showed on the problem of interaction of sheaths around cylidrical probes. We deal with question whether we are able to get some information about unevennesses at the surface of solid immersed in plasma by measuring probe characteristics in its surroundings. We also studied the influence of plasma electronegativity on the parameters of sheaths around cylidrical probes. Powered by TCPDF (www.tcpdf.org)
64

Accélération de protons par laser à ultra-haute intensité : étude et application au chauffage isochore / Proton acceleratio with ultra-high intensity laser : study and application to isochoric heating

Carrié, Michaël 04 February 2011 (has links)
L'interaction d'impulsions lasers brèves et intenses avec un plasma est une source intéressante d'ions énergétiques. Les travaux effectués au cours de cette thèse s'articulent autour de deux grandes thématiques : la production de protons par laser, et leur utilisation pour le chauffage isochore, avec, pour principal outil d'étude, la simulation à l'aide de codes numériques (cinétique particulaire et hydrodynamique). Dans un premier temps, nous avons étudié le comportement de l'énergie cinétique maximale des protons qu'il est possible d'accélérer avec le mécanisme du Target Normal Sheath Acceleration (TNSA), en régime sub-ps, en fonction de différents paramètres, notamment de la durée d'impulsion laser. Nous avons montré que l'allongement de la durée d'impulsion, à énergie laser constante, est responsable du préchauffage et de la détente du plasma avant l'arrivé du pic d'intensité. Les gradients de densité ainsi produits (face avant et face arrière) peuvent favoriser, ou au contraire pénaliser, le gain en énergie cinétique des protons. Les résultats obtenus ont servi à l'interprétation d'une étude expérimentale réalisée au Laboratoire d'Optique Appliquée. Nos efforts se sont ensuite concentrés sur l'élaboration d'un modèle semi-analytique rendant compte de l'énergie cinétique maximale des protons accélérés par le biais du TNSA. Ce modèle permet de retrouver l'ordre de grandeur des intensités nécessaires, de l'ordre de 6x1021 W/cm², pour atteindre des énergies de proton supérieures à 150 MeV avec des impulsions laser de quelques joules et plusieurs dizaines de fs. Dans la dernière partie de cette thèse, nous nous sommes intéressés à l'utilisation de ces faisceaux de protons pour le chauffage isochore. Nous avons caractérisé, dans un premier temps, les fonctions de distribution produites par des cibles composées d'un substrat lourd (A >> 1) sur la face arrière duquel est déposé un plot d'hydrogène (schéma d'Esirkepov). Ensuite, à partir de simulations hydrodynamiques, nous avons étudié le temps caractéristique de détente de la cible chauffée en modifiant des paramètres tels que la distance à la source de protons, l'intensité et la tache focale du laser, et la densité surfacique du plot. Nous avons enfin étendu cette étude aux cibles cylindriques et nous avons montré qu'il est possible de réduire les effets liés à la divergence naturelle du faisceau de protons et ainsi d'obtenir des températures plus élevées. / The interaction of ultra-high intensity, ultra-short laser pulses with matter is an interesting source of energetic ions. During this work, we studied the production of energetic protons and their application to isochoric heating using kinetics and hydrodynamics code. We first considered the behavior of the maximum proton kinetic energy with the Target Normal Sheath Acceleration (TNSA) mechanism, in the sub-ps interaction regime, as a function of different parameters, especially the laser pulse duration. We showed that stretching the pulse duration, with a constant laser energy, led to the preheating and the expansion of the plasma slab. This expansion can be beneficial or detrimental regarding the maximum proton kinetic energy. The results we obtained helped to explain an experimental study carried out at the Laboratoire d'Optique Appliquée. We then developed a semi-analytical model trying to describe the maximum proton kinetic energy that can be produced in the TNSA regime. The results we obtained can retrieve the minimum intensity, of the order of 6x1021 W/cm², that is required to reach proton energies of 150 MeV with femtosecond, few joules laser pulses. As a final step, we were interested in the use of these proton beams for isochoric heating. We first characterized the proton distribution function produced by targets consisting in an heavy substrate with an hydrogen is deposited at the rear side. By the mean of hydrodynamics simulations, we studied the characteristic expansion time of the heated target by varying several parameters such as the heated sample distance from the proton source, the intensity and focal spot size of the laser, and the areal density of the dot. Finally, we extended the previous study to cylindrical targets and we demonstrated that it is possible to counterbalance the natural divergence of the proton beam and hence, to reach higher temperatures.
65

Particle-in-cell simulations of electron dynamics in low pressure discharges with magnetic fields

Sydorenko, Dmytro 14 June 2006
In modern low pressure plasma discharges, the electron mean free path often exceeds the device dimensions. Under such conditions the electron velocity distribution function may significantly deviate from Maxwellian, which strongly affects the discharge properties. The description of such plasmas has to be kinetic and often requires the use of numerical methods. This thesis presents the study of kinetic effects in inductively coupled plasmas and Hall thrusters carried out by means of particle-in-cell simulations. The important result and the essential part of the research is the development of particle-in-cell codes. <p>An advective electromagnetic 1d3v particle-in-cell code is developed for modelling the inductively coupled plasmas. An electrostatic direct implicit 1d3v particle-in-cell code EDIPIC is developed for plane geometry simulations of Hall thruster plasmas. The EDIPIC code includes several physical effects important for Hall thrusters: collisions with neutral atoms, turbulence, and secondary electron emission. In addition, the narrow sheath regions crucial for plasma-wall interaction are resolved in simulations. The code is parallelized to achieve fast run times. <p>Inductively coupled plasmas sustained by the external RF electromagnetic field are widely used in material processing reactors and electrodeless lighting sources. In a low pressure inductive discharge, the collisionless electron motion strongly affects the absorption of the external electromagnetic waves and, via the ponderomotive force, the density profile. The linear theory of the anomalous skin effect based on the linear electron trajectories predicts a strong decrease of the ponderomotive force for warm plasmas. Particle-in-cell simulations show that the nonlinear modification of electron trajectories by the RF magnetic field partially compensates the effects of electron thermal motion. As a result, the ponderomotive force in warm collisionless plasmas is stronger than predicted by linear kinetic theory. <p>Hall thrusters, where plasma is maintained by the DC electric field crossed with the stationary magnetic field, are efficient low-thrust devices for spacecraft propulsion. The energy exchange between the plasma and the wall in Hall thrusters is enhanced by the secondary electron emission, which strongly affects electron temperature and, subsequently, thruster operation. Particle-in-cell simulations show that the effect of secondary electron emission on electron cooling in Hall thrusters is quite different from predictions of previous fluid studies. Collisionless electron motion results in a strongly anisotropic, nonmonotonic electron velocity distribution function, which is depleted in the loss cone, subsequently reducing the electron wall losses compared to Maxwellian plasmas. Secondary electrons form two beams propagating between the walls of a thruster channel in opposite radial directions. The secondary electron beams acquire additional energy in the crossed external electric and magnetic fields. The energy increment depends on both the field magnitudes and the electron flight time between the walls. <p>A new model of secondary electron emission in a bounded plasma slab, allowing for emission due to the counter-propagating secondary electron beams, is developed. It is shown that in bounded plasmas the average energy of plasma bulk electrons is far less important for the space charge saturation of the sheath than it is in purely Maxwellian plasmas. A new regime with relaxation oscillations of the sheath has been identified in simulations. Recent experimental studies of Hall thrusters indirectly support the simulation results with respect to the electron temperature saturation and the channel width effect on the thruster discharge.
66

Particle-in-cell simulations of electron dynamics in low pressure discharges with magnetic fields

Sydorenko, Dmytro 14 June 2006 (has links)
In modern low pressure plasma discharges, the electron mean free path often exceeds the device dimensions. Under such conditions the electron velocity distribution function may significantly deviate from Maxwellian, which strongly affects the discharge properties. The description of such plasmas has to be kinetic and often requires the use of numerical methods. This thesis presents the study of kinetic effects in inductively coupled plasmas and Hall thrusters carried out by means of particle-in-cell simulations. The important result and the essential part of the research is the development of particle-in-cell codes. <p>An advective electromagnetic 1d3v particle-in-cell code is developed for modelling the inductively coupled plasmas. An electrostatic direct implicit 1d3v particle-in-cell code EDIPIC is developed for plane geometry simulations of Hall thruster plasmas. The EDIPIC code includes several physical effects important for Hall thrusters: collisions with neutral atoms, turbulence, and secondary electron emission. In addition, the narrow sheath regions crucial for plasma-wall interaction are resolved in simulations. The code is parallelized to achieve fast run times. <p>Inductively coupled plasmas sustained by the external RF electromagnetic field are widely used in material processing reactors and electrodeless lighting sources. In a low pressure inductive discharge, the collisionless electron motion strongly affects the absorption of the external electromagnetic waves and, via the ponderomotive force, the density profile. The linear theory of the anomalous skin effect based on the linear electron trajectories predicts a strong decrease of the ponderomotive force for warm plasmas. Particle-in-cell simulations show that the nonlinear modification of electron trajectories by the RF magnetic field partially compensates the effects of electron thermal motion. As a result, the ponderomotive force in warm collisionless plasmas is stronger than predicted by linear kinetic theory. <p>Hall thrusters, where plasma is maintained by the DC electric field crossed with the stationary magnetic field, are efficient low-thrust devices for spacecraft propulsion. The energy exchange between the plasma and the wall in Hall thrusters is enhanced by the secondary electron emission, which strongly affects electron temperature and, subsequently, thruster operation. Particle-in-cell simulations show that the effect of secondary electron emission on electron cooling in Hall thrusters is quite different from predictions of previous fluid studies. Collisionless electron motion results in a strongly anisotropic, nonmonotonic electron velocity distribution function, which is depleted in the loss cone, subsequently reducing the electron wall losses compared to Maxwellian plasmas. Secondary electrons form two beams propagating between the walls of a thruster channel in opposite radial directions. The secondary electron beams acquire additional energy in the crossed external electric and magnetic fields. The energy increment depends on both the field magnitudes and the electron flight time between the walls. <p>A new model of secondary electron emission in a bounded plasma slab, allowing for emission due to the counter-propagating secondary electron beams, is developed. It is shown that in bounded plasmas the average energy of plasma bulk electrons is far less important for the space charge saturation of the sheath than it is in purely Maxwellian plasmas. A new regime with relaxation oscillations of the sheath has been identified in simulations. Recent experimental studies of Hall thrusters indirectly support the simulation results with respect to the electron temperature saturation and the channel width effect on the thruster discharge.
67

Etude de l'interactionentre le vent solaire et la magnetosphere de la Terre: Modele theorique et Application sur l'analyse de donnees de l'evenement du Halloween d'octobre 2003

Baraka, Suleiman 21 March 2007 (has links) (PDF)
Une nouvelle approche, en utilisant un 3D code électromagnétique (PIC), est présentée pour étudier la sensibilité de la magnétosphère de la terre à la variabilité du vent solaire. Commençant par un vent solaire empiétant sur une terre magnétisée, le temps a été laissé au système ainsi une structure d'état d'équilibre de la magnétosphère a été atteinte. Une perturbation impulsive a été appliquée au système par changeant la vitesse du vent solaire pour simuler une dépression en sa pression dynamique, pour zéro, au sud et du nord du champ magnétique interplanétaire(IMF). La perturbation appliquée, un effet de trou d'air qui pourrait être décrit comme espace ~15Re est formé pour tous les cas d'état de IMF. Dès que le trou d'air a frappé le choc d'arc initial de la magnétosphère régulière, une reconnexion entre le champ magnétique de la terre et le IMF sud a été notée à la coté jour magnétopause(MP). Pendant la phase d'expansion du système, la frontière externe de la coté jour du MP a enfoncé quand IMF=0, et pourtant elle sa forme de balle quand un IMF au sud et nordique étaient inclus. La relaxation de temps du MP pour les trois cas de IMF a été étudiée. Le code est alors appliqué pour étudier l'événement d'Halloween de l'octobre 2003. Notre simulation a produit un nouveau genre de trou d'air, un espace raréfié qui a été produit après un gradient fort en IMF d'empiétement. Un tel dispositif est tout à fait semblable aux anomalies chaudes observées d'écoulement et peut avoir la même origine
68

Collisionless shocks in the context of Laboratory Astrophysics / Chocs non-collisionnels dans le cadre de l'astrophysique de laboratoire

Grassi, Anna 26 October 2017 (has links)
Cette thèse s'inscrit dans le cadre de l'astrophysique de laboratoire. Nous abordons divers aspects de la physique des chocs non-collisionels en présence de flots de plasma relativistes dans des configurations d'intérêt pour les communautés astrophysique et de l’interaction laser-plasma (ILP). Notre approche repose sur la modélisation analytique et la simulation cinétique haute-performance, outil central pour décrire les processus d'ILP et la physique non linéaire à l'origine des chocs étudiés. Le code Particle-in-Cell SMILEI a été largement utilisé et développé au cours ce travail. Trois configurations physiques sont étudiées. L’instabilité Weibel en présence de faisceaux d'électrons contre-propagatifs alignés avec un champ magnétique externe est décrite. Les phases linéaires et non linéaires sont expliquées à l’aide de modèles théoriques confirmés par des simulations. La génération de chocs non-collisionels lors de l’interaction de deux plasmas relativistes de paires est étudiée en présence d’un champ magnétique perpendiculaire. L’accent est mis sur la comparaison des prédictions théoriques sur les grandeurs macroscopiques avec les simulations, ainsi que sur la définition du temps de formation du choc, l’ensemble de ces grandeurs étant d’une grande importance pour de futures expériences. Enfin, nous proposons un schéma permettant de recréer, en laboratoire, l’instabilité Weibel ionique par l'utilisation d'un laser intense. Les flots de plasmas produits ici sont plus rapides et denses que dans les expériences actuelles, conduisant à un taux de croissance et des champs magnétiques plus élevés. Ces résultats sont également important pour l’ILP à très haute intensité. / The work presented in this thesis belongs to the general framework of Laboratory Astrophysics. We address various aspects of the physics of collisionless shocks developing in the presence of relativistic plasma flows, in configurations of interest for the astrophysical and the laser-plasma interaction (LPI) communities. The approach used throughout this thesis relied on both analytical modeling and high-performance kinetic simulations, a central tool to describe LPI processes as well as the non-linear physics behind shock formation. The PIC code SMILEI has been widely used and developed during this work. Three physical configurations are studied. First we consider the Weibel instability driven by two counter-streaming electron beams aligned with an external magnetic field. The linear and non-linear phases are explained using theoretical models confirmed by simulations.Then the generation of non-collisional shocks during the interaction of two relativistic plasma pairs is studied in the presence of a perpendicular magnetic field. We focus on the comparison of theoretical predictions for macroscopic variables with the simulation results, as well as on the definition and measurement of the shock formation time, all of which are of great importance for future experiments.Finally, we proposed a scheme to produce, in the laboratory, the ion-Weibel-instability with the use of an ultra-high-intensity laser. The produced flows are faster and denser than in current experiments, leading to a larger growth rate and stronger magnetic fields. These results are important for the LPI at very high intensity.
69

Analysis of Prototype Foamy Virus particle-host cell interaction with autofluorescent retroviral particles

Lindemann, Dirk, Stirnnagel, Kristin, Lüftenegger, Daniel, Stange, Annett, Swiersy, Anka, Müllers, Erik, Reh, Juliane, Stanke, Nicole, Große, Arend, Chiantia, Salvatore, Keller, Heiko, Schwille, Petra, Hanenberg, Helmut, Zentgraf, Hanswalter 30 September 2015 (has links)
Background The foamy virus (FV) replication cycle displays several unique features, which set them apart from orthoretroviruses. First, like other B/D type orthoretroviruses, FV capsids preassemble at the centrosome, but more similar to hepadnaviruses, FV budding is strictly dependent on cognate viral glycoprotein coexpression. Second, the unusually broad host range of FV is thought to be due to use of a very common entry receptor present on host cell plasma membranes, because all cell lines tested in vitro so far are permissive. Results In order to take advantage of modern fluorescent microscopy techniques to study FV replication, we have created FV Gag proteins bearing a variety of protein tags and evaluated these for their ability to support various steps of FV replication. Addition of even small N-terminal HA-tags to FV Gag severely impaired FV particle release. For example, release was completely abrogated by an N-terminal autofluorescent protein (AFP) fusion, despite apparently normal intracellular capsid assembly. In contrast, C-terminal Gag-tags had only minor effects on particle assembly, egress and particle morphogenesis. The infectivity of C-terminal capsid-tagged FV vector particles was reduced up to 100-fold in comparison to wild type; however, infectivity was rescued by coexpression of wild type Gag and assembly of mixed particles. Specific dose-dependent binding of fluorescent FV particles to target cells was demonstrated in an Env-dependent manner, but not binding to target cell-extracted- or synthetic- lipids. Screening of target cells of various origins resulted in the identification of two cell lines, a human erythroid precursor- and a zebrafish- cell line, resistant to FV Env-mediated FV- and HIV-vector transduction. Conclusions We have established functional, autofluorescent foamy viral particles as a valuable new tool to study FV - host cell interactions using modern fluorescent imaging techniques. Furthermore, we succeeded for the first time in identifying two cell lines resistant to Prototype Foamy Virus Env-mediated gene transfer. Interestingly, both cell lines still displayed FV Env-dependent attachment of fluorescent retroviral particles, implying a post-binding block potentially due to lack of putative FV entry cofactors. These cell lines might ultimately lead to the identification of the currently unknown ubiquitous cellular entry receptor(s) of FVs.
70

Simulating the FTICR-MS Signal of a Decaying Beryllium-7 Ion Plasma in a 2D Electrostatic PIC Code

Nakata, Michael Takeshi 15 January 2010 (has links) (PDF)
Beryllium-7 (Be-7) only decays by electron capture into lithium-7 (Li-7) with a half life of 53 days. We study the effect of ionization on this decay rate. We do so by trapping a Be-7 ion plasma in a cylindrical Malmberg-Penning trap and measuring Be-7 and Li-7 concentrations as functions of time by using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). We have simulated these signals in a 2-dimensional electrostatic particle-in-cell (PIC) code. The two spectrum peaks merge at high ion densities whereas at low ion densities they can be resolved. The merged peak shifts linearly according to the relative abundances of these species. We have also simulated singly-ionized beryllium-7 hydride (BeH+) and Li-7 ion plasmas at high densities. These two separate peaks shift according to their relative abundances. We describe an analytical model that explains how these peaks shift.

Page generated in 0.0626 seconds