• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude des rayonnements Bétatron et Compton dans l'accélération d'électrons par sillage laser. / Study of the Betatron and Compton X-ray sources produced in laser wakefield acceleration of electrons.

Ferri, Julien 25 November 2016 (has links)
Une impulsion laser ultra-courte et ultra-intense se propageant dans un gaz de faible densité est capable d'accélérer une partie des électrons de ce gaz à des énergies relativistes, de l'ordre de quelques centaines de MeV, sur des distances de seulement quelques millimètres. Pendant leur accélération et dû à leur mouvement transverse, ces électrons émettent de plus un rayonnement X fortement collimaté et dirigé vers l'avant appelé rayonnement bétatron. Les caractéristiques de cette source la rendent intéressante pour son utilisation en imagerie à ultra-haute résolution.Dans ce manuscrit, nous explorons trois axes de travail autour de cette source à l'aide de simulations réalisées avec les codes Particle-In-Cell CALDER et CALDER-Circ. Nous commençons ainsi par étudier la création d'une source bétatron avec des impulsions laser de durée picoseconde et d'énergie kilojoule, donc plus longues et plus puissantes que celles habituellement utilisées par la communauté. Nous montrons que malgré les paramètres inhabituels de ces impulsions lasers il est toujours possibles de générer des sources X, et ce dans deux régimes différents.Ensuite, afin de comprendre une partie des différences généralement observées entre expériences et simulations, nous montrons dans une autre étude que l'utilisation dans les simulations de profils lasers réalistes au lieu de profils parfaitement Gaussiens dégrade fortement les performances de l'accélérateur laser-plasma et de la source bétatron. De plus, ceci conduit à un meilleur accord qualitatif et quantitatif avec l'expérience.Enfin nous explorons plusieurs techniques pour augmenter l'émission X basées sur une manipulation des profils de plasmas utilisés pour l'accélération. Nous trouvons que l'utilisation d'un gradient transverse ou d'une marche de densité conduisent tous deux à une augmentation de l'amplitude du mouvement transverse des électrons, et donc de l'énergie émise par la source bétatron. Alternativement, nous montrons que cet objectif peut-être atteint par la transition d'un régime de sillage laser vers un régime d'accélération par sillage plasma induit par une augmentation de la densité. L'accélération des électrons est optimisée dans le premier régime, tandis que l'émission X est fortement favorisée dans le second. / An ultra-short and ultra-intense laser pulse propagating in a low-density gas can accelerate in its wake a part of the electrons ionized from the gas to relativistic energies of a few hundreds of MeV over distances of a few millimeters only. During their acceleration, as a consequence of their transverse motion, these electrons emit strongly collimated X-rays in the forward direction, which are called betatron radiations. The characteristics of this source turn it into an interesting tool for high-resolution imagery.In this thesis, we explore three different axis to work on this source using simulations on the Particles-In-Cells codes CALDER and CALDER-Circ. We first study the creation of a betatron X-ray source with kilojoule and picosecond laser pulses, for which duration and energy are then much higher than usual in this domain. In spite of the unusual laser parameters, we show that X-ray sources can still be generated, furthermore in two different regimes.In a second study, the generally observed discrepancies between experiments and simulations are investigated. We show that the use of realistic laser profiles instead of Gaussian ones in the simulations strongly degrades the performances of the laser-plasma accelerator and of the betatron source. Additionally, this leads to a better qualitative and quantitative agreement with the experiment.Finally, with the aim of improving the X-ray emission, we explore several techniques based on the manipulation of the plasma density profile used for acceleration. We find that both the use of a transverse gradient and of a density step increases the amplitude of the electrons transverse motions, and then increases the radiated energy. Alternatively, we show that this goal can also be achieved through the transition from a laser wakefield regime to a plasma wakefield regime induced by an increase of the density. The laser wakefield optimizes the electron acceleration whereas the plasma wakefield favours the X-ray emission.
2

Magnetic nozzle plume plasma simulation through a Particle-In-Cell approach in a 3-D domain for a Helicon Plasma Thruster. : A collaboration with REGULUS project T4i Technology for Propulsion and Innovation s.p.a.

Vesco, Cesare January 2021 (has links)
Recent advances in plasma-based propulsion systems have led to the development of electromagnetic Radio-Frequency (RF) plasma generation and acceleration systems, called Helicon Plasma Thrusters (HPT). One of the pioneer companies developing this new type of space propulsion is T4i Technology for Propulsion and Innovation s.p.a., with its cutting-edge project called REGULUS, among which this study has been performed. A crucial part of HPT systems is the acceleration region, where, by the means of a magnetic nozzle, the thermal energy of the plasma is converted into axial acceleration and, in turn, into thrust. This study is focused on the numerically simulation of the plasma dynamics in the acceleration stage, using Xenon gas. A three-dimensional full Particle-In-Cell (PIC) simulation strategy is used to simulate the plume in the magnetic nozzle. The code developed for the plasma simulation is based on the open-source software Spacecraft Plasma Interaction Software (SPIS). The code has been conveniently modified and improved, neutrals and collision processes were added to evaluate their impact on the plasma properties. The features added improved the validity of the results, now one step closer to the physical reality. The code has been proven to be an extremely versatile and powerful tool for optimization and adaptation to different mission scenarios. / De senaste framstegen i plasmaframdrivning har lett till utvecklingen Helicon Plasma Thruster (HPT) som kombinerar elektromagnetisk högfrekvent (RF) plasmakälla och ett accelerationssystem. En av företagen som är pionjärer i att utveckla denna nya framdrivningsteknik är T4i Technology for Propulsion and Innovation s.p.a., med dess banbrytande projekt REGULUS, som detta arbete bygger på. En viktig del av HPT-systemet är accelerationsområde där plasmats termiska energin omvandlas till axiell accelleration i en magnetisk dysa. Denna rapport fokuserar på numeriska modelleringen av plasmadynamiken accelerationsområdet vid användning av Xenongasen. En tredimensionell Particle-In-Cell (PIC) simulering används för att studera plasmautflödet i magnetiska dysan. Koden bygger på den öppna mjukvaran Spacecraft Plasma interaction Software (SPIS). Koden har modifierats och förbättrats, en neutral komponent samt kollisionsprocesser har lagts till och deras påverkan på plasmabeteende har studerats. Dessa nya element förbättrade giltigheten av simulerings-resultaten. Nu ett steg närmre den fysiska verkligheten. Koden är ett mångsidigt och kraftfullt verktyg för optimering och anpassning till olika användningsscenarier.
3

MODELING AND CHARACTERIZATION OF SOLID-STATE AND VACUUM HIGH-POWER MICROWAVE DEVICES

Xiaojun Zhu (8039564) 30 November 2023 (has links)
<p dir="ltr">High-power microwave (HPM) devices are generally vacuum-based devices that transform electron beam energy into microwaves with peak powers above 100 MW from 1-300 GHz. Solid-state HPM devices provide more compactness and greater reliability while consuming less power. Nonlinear transmission lines (NLTLs) provide a solid-state alternative to HPM generation by sharpening the input pulses from a pulse forming network to create output oscillations.</p><p dir="ltr">The first section of this dissertation evaluates and explores the feasibility of using nonlinear composites containing ferroelectric (e.g., Ba<sub>2/3</sub>Sr<sub>1/3</sub>TiO<sub>3</sub>, BST) and/or ferromagnetic (e.g., Ni<sub>1/2</sub>Zn<sub>1/2 </sub>Fe<sub>2</sub>O<sub>4</sub>, NZF) inclusions in a linear polymer host (polydimethylsiloxane, PDMS) to tune NLTL properties for HPM applications. Appropriately modelling and designing NLTLs using nonlinear composites require accurately characterizing their linear and nonlinear electromagnetic properties. We first studied the electromagnetic properties of the composites using theoretical, numerical, and experimental approaches. Incorporating these composite models and characterizations into NLTL simulations will be discussed.</p><p dir="ltr">Vacuum-based HPM devices, such as magnetrons and crossed-field amplifiers, generally operate in the space-charge-limited region, which corresponds to the maximum current possible for insertion into the device. This motivated studying the space-charge-limited current and electron flow in a two-dimensional (2D) planar diode with various crossed-magnetic fields using particle-in-cell (PIC) simulations. For non-magnetically insulated diodes (electrons emitted from the cathode can reach the anode), analytical and/or semi-empirical solutions are derived for electrons with nonzero monoenergetic initial velocity that agree well with PIC simulations. For magnetically insulated conditions, we developed new metrics using simulations and analytic theories to assess electron cycloidal and Brillouin flow to understand the implications of increasing injection current for 2D diodes. These analyses provide details on the operation of these devices at high currents, particularly virtual cathode operation, that may elucidate behavior near their limits of operation.</p>

Page generated in 0.0386 seconds