• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Data-based Therapy Recommender Systems

Gräßer, Felix Magnus 10 November 2021 (has links)
Für viele Krankheitsbilder und Indikationen ist ein breites Spektrum an Arzneimitteln und Arzneimittelkombinationen verfügbar. Darüber hinaus stellen Therapieziele oft Kompromisse zwischen medizinischen Zielstellungen und Präferenzen und Erwartungen von Patienten dar, um Zufriedenheit und Adhärenz zu gewährleisten. Die Auswahl der optimalen Therapieoption kann daher eine große Herausforderung für den behandelnden Arzt darstellen. Klinische Entscheidungsunterstützungssysteme, die Wirksamkeit oder Risiken unerwünschter Arzneimittelwirkung für Behandlungsoptionen vorhersagen, können diesen Entscheidungsprozess unterstützen und \linebreak Leitlinien-basierte Empfehlungen ergänzen, wenn Leitlinien oder wissenschaftliche Literatur fehlen oder ungeeignet sind. Bis heute sind keine derartigen Systeme verfügbar. Im Rahmen dieser Arbeit wird die Anwendung von Methoden aus der Domäne der Recommender Systems (RS) und des Maschinellen Lernens (ML) in solchen Unterstützungssystemen untersucht. Aufgrund ihres erfolgreichen Einsatzes in anderen Empfehlungssystemen und der einfachen Interpretierbarkeit werden zum einen Nachbarschafts-basierte Collaborative Filter (CF) an die besonderen Anforderungen und Herausforderungen der Therapieempfehlung angepasst. Zum anderen werden ein Modell-basierter CF-Ansatz (SLIM) und ein ML Algorithmus (GBM) erprobt. Alle genannten Ansätze werden anhand eines exemplarischen Therapieempfehlungssystems evaluiert, das auf die Behandlung der Autoimmunkrankheit Psoriasis abzielt. Um das Risiko der Empfehlung kontraindizierter oder gar gesundheitsgefährdender Medikamente zu reduzieren, werden Regeln aus evidenzbasierten Leitlinien und Expertenempfehlungen implementiert, um solche Therapieoptionen aus den Empfehlungslisten herauszufiltern. Insbesondere die Nachbarschafts-basierten CF-Algorithmen zeigen insgesamt kleine durchschnittliche Abweichungen zwischen geschätztem und tatsächlichem Therapie-Outcome. Auch die aus den Outcome-Schätzungen abgeleiteten Empfehlungen zeigen eine hohe Übereinstimmung mit der tatsächlich angewandten Behandlung. Die Modell-basierten Ansätze sind den Nachbarschafts-basierten Ansätzen insgesamt unterlegen, was auf den begrenzten Umfang der verfügbaren Trainingsdaten zurückzuführen ist und die Generalisierungsfähigkeit der Modelle erschwert. Im Vergleich mit menschlichen Experten sind alle untersuchten Algorithmen jedoch hinsichtlich Übereinstimmung mit der tatsächlich angewandten Therapie unterlegen. Eine objektive und effiziente Bewertung des Behandlungserfolgs kann als Voraussetzung für ein erfolgreiches ``Krankheitsmanagement'' angesehen werden. Daher wird in weiteren Untersuchungen für ausgwählten klinische Anwendungen der Einsatz von ML Methoden zur automatischen Quantifizierung von Gesunheitszustand und Therapie-Outcome erprobt. Zusätzlich, als weitere Quelle für Informationen über Therapiewirksamkeiten, wird der Einsatz von Sentiment Analysis Methoden zur Extraktion solcher Informationen aus Medikamenten-Bewertungen untersucht. / Under most medical conditions and indications, a great variety of pharmaceutical drugs and drug combinations are available. Beyond that, trade-offs need to be found between the medical requirements and the patients' preferences and expectations in order to support patients’ satisfaction and adherence to treatments. As a consequence, the selection of an optimal therapy option for an individual patient poses a challenging task to prescribers. Clinical Decision Support Systems (CDSSs), which predict outcome as effectiveness and risk of adverse effects for available treatment options, can support this decision-making process and complement guideline-based decision-making where evidence from scientific literature is missing or inappropriate. To date, no such systems are available. Within this work, the application of methods from the Recommender Systems (RS) domain and Machine Learning (ML) in such decision support systems is studied. Due to their successful application in other recommender systems and good interpretability, neighborhood-based CF algorithms are transferred to the medical domain and are adapted to meet the requirements and challenges of the therapy recommendation task. Moreover, a model-based CF method (SLIM) and a state of the art ML algorithm (GBM) are employed. All algorithms are evaluated in an exemplary therapy recommender system, targeting the treatment of the autoimmune skin disease Psoriasis. In order to reduce the risk of recommending contraindicated or even health-endangering drugs, rules derived from evidence-based guidelines and expert recommendations are implemented to filter such options from the recommendation lists. Especially the neighborhood-based CF algorithms show small average errors between estimated and observed outcome. Also, the recommendations derived from outcome estimates show high agreement with the ground truth. The performance of both model-based approaches is inferior to the neighborhood-based recommender. This is primarily assumed to be due to the limited training data sizes, which renders generalizability of the learned models difficult. Compared with recommendations provided by various experts, all proposed approaches are, however, inferior in terms of agreement with the ground truth. An objective and efficient assessment of treatment response can be regarded a prerequisite for successful ``disease management''. Therefore, the use of ML methods for the automatic quantification of health status and therapy outcome for selected clinical applications is investigated in further experiments. Moreover, as additional source of information about drug effectiveness, the use of Sentiment Analysis, in order to extract such information from drug reviews, is investigated.
2

Das Modell des partizipativen Kinderkrankenhauses - Systematische Analyse der Methoden der Partizipation in der stationären Versorgung von Kindern und Jugendlichen / The Model of an Participatory Children's Hospital - Systematic Analysis of Methods of Participation in the Inpatient Care of Children and Adolescents

Mengel, Ronja 22 February 2021 (has links)
No description available.

Page generated in 0.116 seconds