• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of Passive UHF RFID Tag Antennas and Industry Application

Wu, Xunxun January 2010 (has links)
Nowadays, there is a growing demand for reliable assets security and management in various industries. The company SolarWave is eager to implement a comprehensive security system to produce active protection for their expensive product: solar panels. This security system is not only including assets tracking, monitoring but also combined with a control system, which is used to binary control a switch of solar panel to be on in presence of the correct ID and off in absence of the correct ID. One of the technologies that made this concept viable is known as Radio Frequency Identification (RFID). The thesis project is a sub-project in the development project whose content is mentioned as above. It contains two main parts. One is the system solution for the company. The other is RFID tag design which is in parallel with the company solution in order to reach a scientific level of a master thesis. In this thesis, I systematically analyze the operating mechanism and characteristics of RFID, and propose both active and passive RFID solutions for the company. And I also suggest an alternative radio technology ZigBee which can be used instead or as a complement to RFID. Meanwhile, I propose two designs of RFID tag according to the specification of the solar panel. One is modified meandering antenna. This kind of antenna is very effective and popular in RFID tag design in order to minimize the size of antenna. The other is inductively coupled loop antenna. It is a very useful method for conjugate matching in RFID tag antenna. The required input resistance and reactance can be achieved separately by choosing appropriate geometry parameters. It makes the antenna easier to match to the tag chips. Both the RFID antenna designs are simulated on Ansoft HFSS 12.
2

Implementation Study of IEEE 802 : 15.4

Hussain, Assad, Kazim Hafeez, Muhammad January 2006 (has links)
<p>This thesis is analysis-based survey in which our task was to find out the suitability of </p><p>IEEE 802.15.4 for the RFID systems in terms of power. We studied the different RFID </p><p>systems. We analyzed the IEEE 802.15.4 to see how much this protocol can facilitate the </p><p>RFID application, but we just considered the 2.4 GHz physical band as Free2move uses </p><p>this band for its RFID products. Since semi-passive1 RFIDs are the closest competitors </p><p>of the active RFID, so we also compared the IEEE 802.15.4 with ISO 18000-4 (mode2) </p><p>to find out their pros and cons. </p><p>We also tried to evaluate the hardware architecture proposed by Free2move. We </p><p>compared proposed hardware components with other competitors available in the market. </p><p>The main point of focus during hardware evaluation remained its power efficiency. As </p><p>concluding part we have proposed an idea for using the IEEE 802.15.4 standard in semi- </p><p>passive RFIDs.</p>
3

Implementation Study of IEEE 802 : 15.4

Hussain, Assad, Kazim Hafeez, Muhammad January 2006 (has links)
This thesis is analysis-based survey in which our task was to find out the suitability of IEEE 802.15.4 for the RFID systems in terms of power. We studied the different RFID systems. We analyzed the IEEE 802.15.4 to see how much this protocol can facilitate the RFID application, but we just considered the 2.4 GHz physical band as Free2move uses this band for its RFID products. Since semi-passive1 RFIDs are the closest competitors of the active RFID, so we also compared the IEEE 802.15.4 with ISO 18000-4 (mode2) to find out their pros and cons. We also tried to evaluate the hardware architecture proposed by Free2move. We compared proposed hardware components with other competitors available in the market. The main point of focus during hardware evaluation remained its power efficiency. As concluding part we have proposed an idea for using the IEEE 802.15.4 standard in semi- passive RFIDs.
4

Internal Navigation through Interval Vibration Impacts for Visually Impaired Persons: Enhancement of Independent Living

Teng, Xuan 20 October 2016 (has links)
No description available.
5

Dynamic Grouping Algorithms For RFID Tag Identification

Lin, Ning-yan 25 July 2010 (has links)
In passive RFID systems, how to reduce the collision among tags is an important issue at the medium access control layer. The Framed Slotted ALOHA and its variations are well-known anti-collision algorithms for RFID systems. However, when the Framed Slotted ALOHA is used, the system efficiency and the average time delay deteriorate rapidly when the total number of tags increases. On the other hand, the total number of slots in a frame can¡¦t be infinity. In this thesis, we first compare existing anti-collision protocols and then propose a novel algorithm based on the Enhanced Dynamic Framed Slotted ALOHA (EDFSA) and the Progressing Scanning (PS) algorithm. The proposed algorithm is called Dynamic Grouping (DG). The DG algorithm partitions the RFID tags according to the distances from tags to the reader in order to avoid using too many slots in a frame. Inparticular, the DG algorithm estimates the spatial distribution of tags based on previous scanning results and then adjusts the partition accordingly. Unlike PS algorithm, the DG algorithm is applicable when the RFID tags are uniformly distributed or normally distributed.
6

Passive RFID characterization based on radar cross section and backscatter power

Tohin, Md Razoun Siddiky January 2014 (has links)
With the ever growing application requirements for wireless power transmission in recent years, use of Ultra High Frequency (UHF) band via passive RFID technology escalates quickly. However, limited read range and outdoor interference has always been a great obstacle for various RFID applications. Escalating power transmission at the tag to identify and amplify received power under flawless conditions of electromagnetic theory do not provide estimates of read-rates, which bring major limitations to RFID system performance. Therefore, discovering the reason behind these problems and assessing the performance of backscatter power to improve the system performance remains as a crying need.   Implying radar cross section (RCS) mechanism into RFID can enhance the system performance at a larger extent, as passive RFID works same as radar at far field range by detecting backscatter signal from target object. Antenna radiation pattern and co located interference effect are vital considerations for RFID propagation mechanism and tag read range optimization. Consequently, the robust performance of transmitting and receiving antenna will provide a better RCS value when we get them in good agreement with experimental results.   This thesis provides analytical framework for backscatter performance modeling and suggest techniques to enhance the efficiency of reader to tag to reader performance. It explores uncertainties associated with certain parameters like antenna far field radiation property, antenna spacing, optimal backscatter power and communication range, which implies scattering efficiency of the tag and establish a relationship between the measured and predicted values of tag read-rate probabilities. Comparing measurement patterns in both outdoor and in an-echoic chamber, finally it determines method to increase efficiency at power transmission and reception end. Obtained results will encourage the future researchers to design, analyze and enhance the backscattered passive RFID systems at a larger scenario.
7

Comparative Analysis of Tag Estimation Algorithms on RFID EPC Gen-2 Performance

Ferdous, Arundhoti 28 June 2017 (has links)
In a passive radio-frequency identification (RFID) system the reader communicates with the tags using the EPC Global UHF Class 1 Generation 2 (EPC Gen-2) protocol with dynamic framed slotted ALOHA. Due to the unique challenges presented by a low-power, random link, the channel efficiency of even the most modern passive RFID system is less than 40%. Hence, a variety of methods have been proposed to estimate the number of tags in the environment and set the optimal frame size. Some of the algorithms in the literature even claim system efficiency beyond 90%. However, these algorithms require fundamental changes to the underlying protocol framework which makes them ineligible to be used with the current hardware running on the EPC Gen-2 platform and this infrastructure change of the existing industry will cost billions of dollars. Though numerous types of tag estimation algorithms have been proposed in the literature, none had their performance analyzed thoroughly when incorporated with the industry standard EPC Gen-2. In this study, we focus on some of the algorithms which can be utilized on today’s current hardware with minimal modifications. EPC Gen-2 already provides a dynamic platform in adjusting frame sizes based on subsequent knowledge of collision slots in a given frame. We choose some of the popular probabilistic tag estimation algorithms in the literature such as Dynamic Frame Slotted ALOHA (DFSA) – I, and DFSA – II, and rule based algorithms such as two conditional tag estimation (2CTE) method and incorporate them with EPC Gen-2 using different strategies to see if they can significantly improve channel efficiency and dynamicity. The results from each algorithm are also evaluated and compared with the performance of pure EPC Gen-2. It is important to note that while integrating these algorithms with EPC Gen-2 to modify the frame size, the protocol is not altered in any substantial way. We also kept the maximum system efficiency for any MAC layer protocol using DFSA as the upper bound to have an impartial comparison between the algorithms. Finally, we present a novel and comprehensive analysis of the probabilistic tag estimation algorithms (DFSA-I & DFSA-II) in terms of their statistically significant correlations between channel efficiency, algorithm estimation accuracy and algorithm utilization rate as the existing literature only look at channel efficiency with no auxiliary analysis. In this study, we use a scalable and flexible simulation framework and created a light-weight, verifiable Gen-2 simulation tool to measure these performance parameters as it is very difficult, if not impossible, to calculate system performance analytically. This framework can easily be used to test and compare more algorithms in the literature with Gen-2 and other DFSA based approaches.
8

Design And Simulation For Encoded Pn-ofc Saw Sensor Systems

Pavlina, John 01 January 2010 (has links)
Surface acoustic wave (SAW) sensors provide versatility in that they can offer wireless, passive operation in numerous environments. Various SAW device embodiments may also be employed for retrieval of the sensed data. Single sensor systems typically use a single carrier frequency and a simple device embodiment since tagging is not required. However, it is necessary in a multi-sensor environment to both identify the sensor and retrieve the information. Overlapping sensor data signals in time and frequency present problems when attempting to collect the sensed data at the receiver. This dissertation defines a system simulation environment exclusive to SAW sensors. The major parameters associated with a multi-device system include the transmitter, the channel, and the receiver characteristics. These characteristics are studied for implementation into the simulation environment. A coupling of modes (COM) model for SAW devices is utilized as an accurate software representation of the various SAW devices. Measured device results are presented and compared with COM model predictions to verify performance of devices and system. Several coding techniques to alleviate code collisions and detection errors were investigated and evaluated. These specialized techniques apply the use of time, frequency, and spatial diversity to the devices. Utilizing these multiple-access techniques a multi-device system is realized. An optimal system based on coding technique, frequency of operation, range, and related parameters is presented. Funding for much of this work was provided through STTR contracts from NASA Kennedy Space Center.
9

Liquid level monitoring using passive RFID tags

Atojoko, Achimugu A., Bin-Melha, Mohammed S., Elkhazmi, Elmahdi A., Usman, Muhammad, Abd-Alhameed, Raed, See, Chan H. January 2013 (has links)
No / Tank flooding have become major causes of pollution both in residential and industrial areas majorly caused by overflows of water(mostly residential) and volatile poisonous industrial liquids from the storage tanks. An effective way of avoiding this problem will be by deploying some mechanism to monitor liquid level at each point in time and escalating unusual liquid levelsto a pump control circuit or to the relevant authorities for prompt action to avoid a flooding occurrence. This paper presents a low cost power efficient liquid level monitoring technique. Passive RFID tags are designed modelled and deployed, the signal variation from the Alien Reader Software are used to effectively estimate the level of liquid in any surface or underground tank. The experimental set up is presented and an expository presentation is made of the passive tag design, modelled and simulated and adopted for same application.
10

Energy efficient gully pot monitoring system using radio frequency identification (RFID)

Atojoko, Achimugu A., Jan, N.M., Elmegri, Fauzi, Abd-Alhameed, Raed, See, Chan H., Noras, James M. January 2013 (has links)
No / Sewer and gully flooding have become major causes of pollution particularly in the residential areas majorly caused by blockages in the water system and drainages. An effective way of avoiding this problem will be by deploying some mechanism to monitor gully pot water level at each point in time and escalating unusual liquid levels to the relevant authorities for prompt action to avoid a flooding occurrence. This paper presents a low cost power efficient gully pot liquid level monitoring technique. Passive RFID tags are deployed and signal variation from the Alien Reader Software are used to effectively estimate the level of liquid in the gully pot. The experimental set up is presented and an expository presentation is made of the passive tag design, modelled and simulated and adopted for same application.

Page generated in 0.0229 seconds