• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 13
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 54
  • 54
  • 13
  • 12
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Pasivní vzorkování polárních organických kontaminantů z vod / Passive sampling of polar organic pollutants from water

Vítková, Libuše January 2011 (has links)
This thesis deals with the passive sampling of polar compounds from water using passive samplers POCIS (Polar Organic Chemical Integrative Sampler). These devices were exposed for 4 weeks in the waste water at the inflow of municipal waste water treatment plant in Brno – Modřice, and also at the outflow of the treated water. After exposition sequestered compounds were released by extraction with a mixture of methanol, toluene and dichlormethane. Extracts were analysed by liquid chromatography/mass spectrometry with electrospray ionization. Further, methylated and trimethylsilylated extracts were analysed by orthogonal comprehensive two-dimensional gas chromatography with mass spectrometric detection. Separated compounds were identified on the base of their retention and mass spectra.
22

Výpočet expozičního indexu AOT40 z výsledků měření koncentrací přízemního ozonu pasivními dosimetry / Estimation of exposure index for surface ozone AOT40 from diffusive sampler measurements

Pavlíková, Monika January 2010 (has links)
The study summerizes methods of ozone AOT40 index estimation from time intergarated passive sampler measurements in forests. Ground-level ozone is a highly phytotoxic atmospheric pollutant. In recent years negative impacts of elevated concentrations of ground-level ozone on vegetation and ecosystems have been studied and atmospheric levels of ozone have been measured. There is a noticeable negative impact of elevated concentrations of ground-level ozone on forests in the Czech Republic, mainly in rural areas that are far away from the emission sources. The AOT40F exposure index is a tool to assess the geographical areas with vegetation potentially at risk due to elevated ground-level ozone concentrations. The AOT40 index is the accumulated hourly exposure during daytime hours above cut-off concentration of 40 ppb, during the growing season. Passive samplers are used for measuring ground-level ozone in high spatial resolution. Passive samplers are easy to use. However this metod provides time intergrated values of pollutant concentrations (1-2 weeks). It is not possible to estimate AOT40 index by using just data of mean ozone concentrations over the sampling period. Three methods were used to estimate the exposure index AOT40F for forests by mean ozone concentrations measured in the Jizerské Hory...
23

Distribucija lipofilnih organskih polutanata u heterogenom multikomponentnom rečnom sistemu / Distribution of lipophilic organic pollutants in a river heterogeneous multicomponent system

Brborić Maja 02 October 2020 (has links)
<p>U doktorskoj disertaciji evaluirani su rezultati kvantifikovanih koncentracionih nivoa lipofilnih perzistentnih i emergentnih organskih polutanata u uzorcima sedimenta kolektovanih sa deset reprezentativnih lokaliteta u srednjem Podunavlju. Na osnovu sprovedenih laboratorijskih i terenskih istraživanja definisan je prostorni trend jedinjenja na ispitivanom području. Primenom multivarijantnih tehnika eksperimentalni rezultati su uspešno modelovani statističkim metodama koje su izdiferencirale izvore kontaminacije za ukupan set ispitivanih polutanata. Prikazana je procena uticaja kontaminiranog sedimenta na akvatične organizme i humanu populaciju prema stepenu kancerogenosti jedinjenja. Predstavljeni su različiti scenariji izloženosti ingestijom i dermalnim kontaktom, u zavisnosti od vremena ekspozicije i izložene površine potencijalnih receptora, različitog uzrasta i pola. Po prvi put u istraživanom području, implementirana je ex-situ ravnotežna metodologija pasivnog uzorkovanja primenom sorpcionog medijuma od silikonske gume testirane pri različitim masenim odnosima polimer-uzorak sedimenta. Primenjenom metodom uspešno su dobijene slobodno rastvorene koncentracije lipofilnh kontaminanata u pornoj vodi sedimenta, kao prediktora za određivanje biodostupnosti jedinjenja.</p> / <p>The doctoral dissertation evaluated the results of quantified concentration levels of lipophilic persistent and emergent organic pollutants in sediment samples collected from ten representative localities in the central Danube region. Based on the conducted laboratory and field research, the spatial distribution of compounds in the studied area was defined. Using multivariate techniques, the experimental results were successfully modeled by statistical methods that differentiated the sources of contamination for the total set of tested pollutants. A risk assessment of contaminated sediment on aquatic organisms and the human population according to carcinogenicity of the tested compounds is presented in thesis. Different exposure scenarios of ingestion and dermal contact, depending on the time exposure and exposed surface skin of potential receptors, of different ages and sex, are presented. For the first time in the study area, an ex-situ equilibrium passive sampling methodology was implemented using silicone rubber sorption medium tested at different polymer-sample sediment mass ratios. Using the method, the freely dissolved concentrations of lipophilic contaminants in pore water were successfully obtained as predictors for determining the bioavailability of the compounds.</p>
24

Assessing the Influence of Prescribed Fire on Faunal Communities in a Pyric Landscape

Jorge, Marcelo Haidar 31 January 2020 (has links)
Understanding the link between environmental factors such as disturbance events, land cover, and soil productivity to spatial variation in animal distributions and vital rates is fundamental to population ecology and wildlife management. The Longleaf pine (Pinus palustris; hereafter, LLP) ecosystem is an archetypal fire-mediated ecosystem, which has seen drastic reductions in land area due to fire suppression. Current restoration utilizes prescribed fire and hardwood removal, but more research is needed to understand the influence of these restoration efforts on the wildlife that exist in that ecosystem. As such, we conducted field surveys on Camp Blanding Joint Training Center and Wildlife Management Area to understand how fire influences relative abundances of mammalian predators, occupancy and species richness of avian species, guilds and communities, and vital rates of white-tailed deer (Odocoileus viginianus) fawns. Our results indicated that mammalian predator space use, and avian species richness were influenced by fire and land cover. Mammalian predator space use was altered by fire conditions and land cover. This mechanism may support predator management strategies that utilizes commonly management techniques for the restoration and conservation of the LLP ecosystem to indirectly alter predator distributions, which has the potential to positively affect the management of important species within this ecosystem. Some mammalian mesocarnivores historically common throughout the southeastern United States were rarely detected, suggesting more research is needed to identify the cause of the potential decline in mesocarnivores in the Southeastern United States. Avian species richness at the community level was positively influenced by the heterogeneity of post fire conditions, or pyrodiversity. Avian species richness of the cavity nesting guild was negatively influenced by increasing time-since-fire. Our results suggest that managers can promote avian community diversity by reducing the size of burn units to create areas with multiple adjacent burn units, with unique fire histories and a mosaic of post-fire conditions. Lastly, fawn recruitment was greater on the higher productivity site than the low productivity site on CB. However, within sites soil productivity did not have a demonstrable effect. In fact, we observed differences between sites, but did not observe any effects of covariates on spatial variation in density or survival of fawns within sites. Although we did not explicitly test the factors influencing our parameters between sites, we hypothesize that the variation in coyote activity rates as well as soil productivity and its subsequent effects (i.e. forage availability, concealment cover, and land cover type) likely drove the differences we saw between sites. These results are relevant to local managers and provide support for unit-specific, deer management on CB. In conclusion, understanding the influence of fire in a frequently burned landscape allows us to better inform management of predators and avian communities using prescribed burns, and the differences in deer populations between areas allowed us to better in inform managers on harvest quotas so that the magnitude of the effect of harvest can better match the population vital rates of each area. / Master of Science / Understanding the link between environmental factors such as fire, land cover and soil productivity is essential for wildlife managers to maintain healthy wildlife populations. The Longleaf pine (Pinus palustris) ecosystem requires frequent fire and has seen drastic reductions in land area due to fire suppression. Current restoration utilizes prescribed fire, controlled burning of an area, and hardwood removal, logging hardwood trees such as oaks, but more research is needed to understand how this restoration influences the wildlife in the longleaf pine ecosystem. As such, we collected data collected from Camp Blanding Joint Training Center and Wildlife Management Area to understand how fire influences the relative numbers of mammalian predators, the distribution and species richness (i.e. number of unique species) of avian species, guilds and communities, and vital rates (i.e. births, survival to a certain age) of white-tailed deer fawns. Our results indicated that mammalian predator distributions, and avian species richness were influenced by fire and land cover. Mammalian predator space use was altered by fire conditions and landcover, which supports a predator management strategy that utilizes prescribed burning and hardwood removal used in restoration and conservation of the LLP ecosystem to indirectly alter predator distributions. Some mammalian mesocarnivores (i.e. foxes, skunks, weasels, etc.) historically common throughout the southeastern United States were rarely detected, suggesting more research is needed to identify the cause of the potential decline of cryptic mesocarnivores in the Southeastern United States. Avian species richness, number of unique species, at the community level was positively influenced by pyrodiversity, the number of unique burn years in an area. This supports and further extends the 'pyrodiversity begets biodiversity' hypothesis for avian species, which states that greater pyrodiversity increases the diversity of bird species in that area. Avian species richness of cavity nesting birds decreased with increasing time since fire. Our results suggest that managers can promote avian community diversity by reducing the size of burn units to create areas with multiple adjacent burn units, with unique fire histories and a mosaic of post-fire conditions. Lastly, fawn recruitment was greater on the higher productivity site than the low productivity site, however, within sites soil productivity did not seem to influence birth and recruitment. Although we did not statistically test the factors influencing our parameters between sites, we hypothesize that the variation in coyote activity rates as well as soil productivity and its subsequent effects (i.e. forage availability, concealment cover, and land cover type) likely drove the differences we saw between sites. These results are relevant to local managers and provide support for managing deer differently across both sites. In conclusion, understanding the influence of fire in a frequently burned landscape allows us to better inform management of predators and avian communities using prescribed burns, and the differences in deer populations between areas allowed us to better in inform managers on harvest quotas so that the magnitude of the effect of harvest can better match the population vital rates of each area.
25

Spatial Distribution Of Organic Pollutants In Bursa Atmosphere: Seasonality And Health Effects

Yilmaz Civan, Mihriban 01 March 2010 (has links) (PDF)
The assessment of volatile organic compounds (VOCs) has become an area of particular interest in the field of atmospheric pollution due to their adverse health and environmental effects. This study is aimed to identify, quantify and characterize VOC in different urban areas and industrial areas in Bursa. The spatial distribution, seasonal variation as well as health risks assessment of VOC were discussed. Air samples were collected by means of sorbent passive sampling at over 50 sampling points in Bursa and analyzed by GC-thermal desorption. A total of seven weekly measurement periods were completed across the city center from 2005 to 2007. The source of VOC was apportioned with the commonly used receptor model, namely Factor Analysis. Motor vehicles and industrial solvent usage are the most abundant VOC sources to contribute to urban atmosphere in Bursa, 63% and 20%, respectively. The health risks of VOC were also evaluated. The questionnaire was filled out by selected people living in Bursa to obtain time-activity pattern for health risk assessment. Lifetime cancer risks were estimated with the measured VOC data. All the statistical parameters used to represent cancer risks for the selected compounds exceeded the stated level. Benzene had the highest adverse health effect among these compounds according to USEPA (2009) calculation with the mean cancer risk 3x10-4. In addition to intensive field sampling campaigns conducted in Bursa, the VOC measurement were completed for a period of six months to evaluate uptake rate of VOC in Ankara. Uptake rate equations depending on relative humidity and wind speed were developed for 25 VOCs.
26

Untersuchungen zur Quantifizierung der Grundwasserimmission von polyzyklischen aromatischen Kohlenwasserstoffen mithilfe von passiven Probennahmesystemen

Börke, Peter 05 October 2007 (has links) (PDF)
Kern der Arbeit bildete die Entwicklung einer Fluxmeter-Passivsammlereinheit für hydrophobe organische Substanzen im Grundwasser kontaminierter Standorte sowie deren Testung im Feld. Ferner kamen Keramik-Dosimeter unter identischen Feldbedingungen zum Einsatz. Die Ergebnisse der beiden passiven Sammelsysteme wurden mit herkömmlicher Grundwasserprobennahmetechnik mithilfe von Unterwassermotorpumpen verglichen und bewertet. Grundlage für den Einsatz der Passivsammlereinheit als „mass flux meter“ bildete die Kenntnis über den Volumenstrom im Bohrloch und den reduzierten Volumenstrom in der Passivsammlereinheit und andererseits über die räumliche Verteilung der hydraulischen Durchlässigkeit und der daraus resul¬tierenden heterogenen Geschwindigkeitsverteilung bzw. der Volumenströme über so genannte Kontroll¬ebenen bzw. Teilbilanzräume. Anhand numerischer Modelluntersuchungen konnten der Filterwiderstand der Passivsammlereinheit und die Strömungsverteilung in Modellkontrollebenen und im Feld näherungsweise bestimmt werden. Die Bestimmung des Volumenstromes des untersuchten Standortes wurde zum einen mithilfe von numerischen Modelluntersuchungen an stochastisch generierten quasi-3-dimensionalen Modellen mit hydro¬dynamischen Randbedingungen und kF-Wertverteilungen aus dem Feld und zum anderen mithilfe von Einbohrlochverfahren durchgeführt. Als Einbohrlochverfahren kamen zum einen ein optisches Kolloid-Logging (Grundwasserfluss-Visualisierungssystem) und zum anderen ein modifiziertes Fluidlogging-Verfahren mit Hilfe eines Salztracers zum Einsatz.
27

Air quality in the Johannesburg-Pretoria megacity: its regional influence and identification of parameters that could mitigate pollution / A.S.M. Lourens

Lourens, Alexandra Susanna Maritz January 2012 (has links)
A megacity is generally defined as a city that, together with its suburbs or recognised metropolitan area, has a total population of more than 10 million people. Air pollution in megacities is a major concern due to large increases of populations over the past decades. Increases of air pollution result from more anthropogenic emission sources in megacities, which include energy production, transportation, industrial activities and domestic fuel burning. In the developing parts of Africa, urbanisation is increasing rapidly, with growth rates of populations in cities of up to 5% per annum. The major driving forces for these population increases in African countries can be attributed to population growth, natural disasters and armed ethnic conflicts. In South Africa, 62% of the total population lived in cities in 2010. The rate of urbanisation growth is predicted to be 1.2% per annum. The largest urbanised city in South Africa is the Johannesburg-Pretoria conurbation (referred to as Jhb-Pta megacity) that has more than 10 million inhabitants. Johannesburg is considered to be the central hub of economic activities and -growth in South Africa. The larger conurbation includes all the suburbs of Johannesburg and Pretoria. In South Africa, household combustion and traffic emissions are major sources of pollutants in urbanised areas. The major pollutants emitted from these activities include nitrogen oxide (NO), nitrogen dioxide (NO 2 ), sulphur dioxide (SO2 ), carbon monoxide (CO), particular matter (PM) and various organic compounds. The Jhb-Pta megacity is also located relatively close to large industrialised regions in South Africa, i.e. the Mpumalanga Highveld and the Vaal Triangle. Very few air quality modelling studies have been conducted for the Jhb-Pta megacity. According to the knowledge of the author, no literature existed in peer-reviewed publications at the time of the study. An in-depth modelling study was therefore conducted to assess the current state of air quality within the Jhb-Pta megacity. The main objectives were to optimise an existing photochemical box model for the Jhb-Pta megacity and to utilise the model to investigate the photochemical processes in the Jhb-Pta megacity and surrounding areas. In this investigation, ground-based measurements of criteria atmospheric pollutant species representative of the Jhb- Pta megacity were obtained to utilise as input data in the model, as well as to compare to results determined with the model. From the ground-based measurements, the possible contribution of the Jhb-Pta megacity to the NO2 hotspot observed over the South African Highveld from satellite retrievals was also contextualised. Five ground-based monitoring sites were situated strategically within the boundaries of the Jhb- Pta megacity to measure the direct influences of urban air pollution, e.g. traffic emissions, biomass burning and residential pollution. One measurement site was situated outside the modelling domain in order to collect rural background data in close proximity to the Jhb-Pta megacity. All the air quality stations continuously measured the criteria pollutants NOx, SO2 and O3. In addition, benzene, toluene, ethylbenzene and xylene (BTEX) were measured at four sites. Passive sampling of NOx, SO2 , O3 and BTEX was also conducted in March and April 2010. Active data was obtained for March to May 2009, since no active measurements were available for the same year that passive sampling was performed due to logistical reasons. Meteorological parameters that included temperature, pressure and relative humidity were also measured at the monitoring stations Ground-based measurements provided a good indication of the state of the air quality in the Jhb-Pta megacity. The air quality levels of NO2 , SO2 , O3 and BTEX could be compared to other cities in the world. A distinct diurnal cycle was observed for NO2 at most of the stations. An early morning peak between 6:00 and 9:00 coincided with the time that commuters travel to work, whereas an evening peak between 18:00 and 21:00 could be attributed to traffic emissions and household combustion. Levels of O3, which is a secondary pollutant, peaked between 13:00 and 15:00. This diurnal pattern could be attributed to the photochemical formation of O3 from precursor species NO and VOCs. Toluene was predominantly higher than the other BTEX species. Benzene and xylene concentrations were in the same order, while the lowest levels were measured for ethyl benzene Ground-based measurements also indicated that the NO2 Highveld hotspot, which is well known in the international science community due to its prominence in satellite images, is accompanied by a second hotspot over the Jhb-Pta megacity. Peak NO2 pollution levels in the Jhb-Pta megacity exceeded the maximum daily Highveld values during the morning and evening rush hours. This result is significant for the more than 10 million people living in the Jhb-Pta megacity. Although satellite instruments have been extremely valuable in pointing out global hotspots, a limitation of satellite retrievals due to their specific overpass times has been presented. Chemical processes in the Jhb-Pta megacity were investigated by utilising an existing photochemical box model, i.e. MECCA-MCM. This model was further developed in this study and was termed the MECCA-MCM-UPWIND model. This model included horizontal and vertical mixing processes in the atmosphere. These processes were included to simulate the advection of upwind air masses into the modelling domain, as well as the entrainment from the troposphere resulting from the diurnal mixing layer (ML) height variation. Three processes, i.e. horizontal mixing, vertical mixing and ML height variation, were built into the MECCA-MCM- UPWIND model. The model was tested and evaluated to determine the efficiency of the model to represent atmospheric mixing processes. MECCA-MCM-UPWIND simulated horizontal mixing, vertical entrainment and ML height variations as expected. The input data for the model runs for the Jhb-Pta megacity modelling runs were either obtained from ground-based measurements or literature. Input data included meteorology, emission inventory, ML height and mixing ratios of the atmospheric chemical species. The chemical composition of the air mass entering the Jhb-Pta megacity was determined with MECCA-MCM- UPWIND. The concentrations and diurnal variability of criteria pollutant species were well predicted with the MECCA-MCM-UPWIND model. The day-time chemistry, especially, compared well, while slight under-predictions were observed for the night-time chemistry for most of the species. The differences observed between modelled and measured data could partially be ascribed to uncertainties associated with some of the input data obtained from literature used. The MECCA-MCM-UPWIND model was used to perform sensitivity studies on the influence of different parameters on O3 levels in the Jhb-Pta megacity. Possible scenarios to alter or mitigate pollution were also investigated. The results from the sensitivity analyses showed that O3 mixing ratios decreased within the Jhb-Pta megacity with increasing wind speeds. The contribution of local emissions to the change in the concentration of pollutants is reduced at higher wind speeds. It also indicated that the Mpumalanga Highveld can potentially be a source of NOx in the Jhb-Pta megacity that can lead to the titration of O3 . This also implies that if the air quality of the surrounding area improves, the concentration of the secondary pollutant O 3 will increase in the Jhb-Pta megacity due to the decrease in the titration of O3 . Sensitivity analyses also indicated that the Jhb-Pta megacity is a VOC-limited (or NOx-saturated) regime. Therefore, O3 reduction in the Jhb-Pta megacity will mostly be effective if VOC emissions are reduced. The same effect was observed in various cities world-wide where O3 increased when NOx emissions the Jhb-Pta megacity on the instantaneous production of O 3 was also investigated. A significant increase of approximately 23ppb O3 production was observed when changing from Euro-0 to Euro-3 vehicles with lower emissions of VOCs, NOx and CO. This compares with other modelled sensitivity studies of traffic emissions that also predict that future urban O 3 concentrations will increase in many cities by 2050 due to the reduction in the NOx titration of O3 despite the implementation of O3 control regulations / Thesis (PhD (Environmental Sciences))--North-West University, Potchefstroom Campus, 2013
28

Air quality in the Johannesburg-Pretoria megacity: its regional influence and identification of parameters that could mitigate pollution / A.S.M. Lourens

Lourens, Alexandra Susanna Maritz January 2012 (has links)
A megacity is generally defined as a city that, together with its suburbs or recognised metropolitan area, has a total population of more than 10 million people. Air pollution in megacities is a major concern due to large increases of populations over the past decades. Increases of air pollution result from more anthropogenic emission sources in megacities, which include energy production, transportation, industrial activities and domestic fuel burning. In the developing parts of Africa, urbanisation is increasing rapidly, with growth rates of populations in cities of up to 5% per annum. The major driving forces for these population increases in African countries can be attributed to population growth, natural disasters and armed ethnic conflicts. In South Africa, 62% of the total population lived in cities in 2010. The rate of urbanisation growth is predicted to be 1.2% per annum. The largest urbanised city in South Africa is the Johannesburg-Pretoria conurbation (referred to as Jhb-Pta megacity) that has more than 10 million inhabitants. Johannesburg is considered to be the central hub of economic activities and -growth in South Africa. The larger conurbation includes all the suburbs of Johannesburg and Pretoria. In South Africa, household combustion and traffic emissions are major sources of pollutants in urbanised areas. The major pollutants emitted from these activities include nitrogen oxide (NO), nitrogen dioxide (NO 2 ), sulphur dioxide (SO2 ), carbon monoxide (CO), particular matter (PM) and various organic compounds. The Jhb-Pta megacity is also located relatively close to large industrialised regions in South Africa, i.e. the Mpumalanga Highveld and the Vaal Triangle. Very few air quality modelling studies have been conducted for the Jhb-Pta megacity. According to the knowledge of the author, no literature existed in peer-reviewed publications at the time of the study. An in-depth modelling study was therefore conducted to assess the current state of air quality within the Jhb-Pta megacity. The main objectives were to optimise an existing photochemical box model for the Jhb-Pta megacity and to utilise the model to investigate the photochemical processes in the Jhb-Pta megacity and surrounding areas. In this investigation, ground-based measurements of criteria atmospheric pollutant species representative of the Jhb- Pta megacity were obtained to utilise as input data in the model, as well as to compare to results determined with the model. From the ground-based measurements, the possible contribution of the Jhb-Pta megacity to the NO2 hotspot observed over the South African Highveld from satellite retrievals was also contextualised. Five ground-based monitoring sites were situated strategically within the boundaries of the Jhb- Pta megacity to measure the direct influences of urban air pollution, e.g. traffic emissions, biomass burning and residential pollution. One measurement site was situated outside the modelling domain in order to collect rural background data in close proximity to the Jhb-Pta megacity. All the air quality stations continuously measured the criteria pollutants NOx, SO2 and O3. In addition, benzene, toluene, ethylbenzene and xylene (BTEX) were measured at four sites. Passive sampling of NOx, SO2 , O3 and BTEX was also conducted in March and April 2010. Active data was obtained for March to May 2009, since no active measurements were available for the same year that passive sampling was performed due to logistical reasons. Meteorological parameters that included temperature, pressure and relative humidity were also measured at the monitoring stations Ground-based measurements provided a good indication of the state of the air quality in the Jhb-Pta megacity. The air quality levels of NO2 , SO2 , O3 and BTEX could be compared to other cities in the world. A distinct diurnal cycle was observed for NO2 at most of the stations. An early morning peak between 6:00 and 9:00 coincided with the time that commuters travel to work, whereas an evening peak between 18:00 and 21:00 could be attributed to traffic emissions and household combustion. Levels of O3, which is a secondary pollutant, peaked between 13:00 and 15:00. This diurnal pattern could be attributed to the photochemical formation of O3 from precursor species NO and VOCs. Toluene was predominantly higher than the other BTEX species. Benzene and xylene concentrations were in the same order, while the lowest levels were measured for ethyl benzene Ground-based measurements also indicated that the NO2 Highveld hotspot, which is well known in the international science community due to its prominence in satellite images, is accompanied by a second hotspot over the Jhb-Pta megacity. Peak NO2 pollution levels in the Jhb-Pta megacity exceeded the maximum daily Highveld values during the morning and evening rush hours. This result is significant for the more than 10 million people living in the Jhb-Pta megacity. Although satellite instruments have been extremely valuable in pointing out global hotspots, a limitation of satellite retrievals due to their specific overpass times has been presented. Chemical processes in the Jhb-Pta megacity were investigated by utilising an existing photochemical box model, i.e. MECCA-MCM. This model was further developed in this study and was termed the MECCA-MCM-UPWIND model. This model included horizontal and vertical mixing processes in the atmosphere. These processes were included to simulate the advection of upwind air masses into the modelling domain, as well as the entrainment from the troposphere resulting from the diurnal mixing layer (ML) height variation. Three processes, i.e. horizontal mixing, vertical mixing and ML height variation, were built into the MECCA-MCM- UPWIND model. The model was tested and evaluated to determine the efficiency of the model to represent atmospheric mixing processes. MECCA-MCM-UPWIND simulated horizontal mixing, vertical entrainment and ML height variations as expected. The input data for the model runs for the Jhb-Pta megacity modelling runs were either obtained from ground-based measurements or literature. Input data included meteorology, emission inventory, ML height and mixing ratios of the atmospheric chemical species. The chemical composition of the air mass entering the Jhb-Pta megacity was determined with MECCA-MCM- UPWIND. The concentrations and diurnal variability of criteria pollutant species were well predicted with the MECCA-MCM-UPWIND model. The day-time chemistry, especially, compared well, while slight under-predictions were observed for the night-time chemistry for most of the species. The differences observed between modelled and measured data could partially be ascribed to uncertainties associated with some of the input data obtained from literature used. The MECCA-MCM-UPWIND model was used to perform sensitivity studies on the influence of different parameters on O3 levels in the Jhb-Pta megacity. Possible scenarios to alter or mitigate pollution were also investigated. The results from the sensitivity analyses showed that O3 mixing ratios decreased within the Jhb-Pta megacity with increasing wind speeds. The contribution of local emissions to the change in the concentration of pollutants is reduced at higher wind speeds. It also indicated that the Mpumalanga Highveld can potentially be a source of NOx in the Jhb-Pta megacity that can lead to the titration of O3 . This also implies that if the air quality of the surrounding area improves, the concentration of the secondary pollutant O 3 will increase in the Jhb-Pta megacity due to the decrease in the titration of O3 . Sensitivity analyses also indicated that the Jhb-Pta megacity is a VOC-limited (or NOx-saturated) regime. Therefore, O3 reduction in the Jhb-Pta megacity will mostly be effective if VOC emissions are reduced. The same effect was observed in various cities world-wide where O3 increased when NOx emissions the Jhb-Pta megacity on the instantaneous production of O 3 was also investigated. A significant increase of approximately 23ppb O3 production was observed when changing from Euro-0 to Euro-3 vehicles with lower emissions of VOCs, NOx and CO. This compares with other modelled sensitivity studies of traffic emissions that also predict that future urban O 3 concentrations will increase in many cities by 2050 due to the reduction in the NOx titration of O3 despite the implementation of O3 control regulations / Thesis (PhD (Environmental Sciences))--North-West University, Potchefstroom Campus, 2013
29

Pesticides in the air, atmospheric deposits, and surface waters of Canada

Messing, Paul 08 January 2015 (has links)
In Canada, more than 35 million kilograms of pesticide active ingredients are applied annually on agricultural land with about 84% of this mass applied in the Canadian Prairies Provinces. Pesticide residues may become airborne through post-volatilization losses from land, water or vegetative surfaces, via wind-eroded soil, and by spray drift during pesticide application. Once in the air, pesticides may be dispersed and transported as parent molecules or as degradation products. Currently used and legacy pesticide air concentrations were measured in the agricultural region of the Prairie Provinces and the northern subarctic and arctic regions of Canada in 2005 and 2007. More intensive air sampling was conducted across the province of Manitoba in 2008 and 2009. Separate wet versus dry atmospheric deposition samples and wetland water samples were also taken in these years. In general, pesticides were detected in the monitored environmental media as mixtures with the frequency and concentrations detected being largest for pesticides that were applied on-site. Although the most commonly used herbicides in western Canadian agriculture were frequently present in the air in the regions where they are applied, they appeared infrequently and at low levels in the Canadian Subarctic, Arctic, and remote sites far from agricultural pesticide applications. Results also indicated that the concentrations of legacy pesticides such as lindane (γ-HCH) and its manufacturing by-product prior to 1971 (α-HCH) continued to decrease over time in the Canadian environment. Air concentrations of pesticides in agricultural regions, and subsequent wet and dry atmospheric deposition, contaminated surface water following periods of pesticide application. Dry deposition contributed 12–51% of the total deposition. Calculations were performed to predict wetland water column pesticide concentrations based on total atmospheric deposits alone. The estimated concentrations were closest to actual concentrations for MCPA and predictions were also reasonable for a range of other herbicides, but a source other than atmospheric deposition was clearly relevant to the detection of clopyralid in the wetland water-column. Individual herbicide concentrations did not exceed Canadian water quality guidelines for the protection of aquatic life.
30

Etude de l’échantillonnage intégratif passif pour l’évaluation réglementaire de la qualité des milieux aquatiques : application à la contamination en pesticides et en éléments trace métalliques des bassins versants du Trec et de l’Auvézère / Evaluation of passive sampling for regulatory monitoring of aquatic environments : application for the contamination in pesticides and in elements track metallic of the ponds hillsides of Trec and of the Auvézère

Poulier, Gaelle 05 November 2014 (has links)
Parce qu’ils sont peu coûteux, faciles d’utilisation, et surtout très efficaces, les pesticides sont devenus une composante majeure de l’agriculture moderne et se sont imposés dans de nombreuses activités urbaines et domestiques. Ces molécules se retrouvent aujourd’hui dans tous les compartiments de l’environnement notamment dans les milieux aquatiques. Le suivi resserré des substances actives et de leurs résidus, présents dans l’environnement à des concentrations potentiellement dommageables pour les écosystèmes, apparaît aujourd’hui comme une nécessité. L’application de la Directive cadre sur l’eau, l’une des principales réglementations européenne ciblant les eaux, requiert des techniques d’échantillonnage et d’analyse performantes, alliant haute sensibilité, facilité de mise œuvre, coûts abordables, et surtout précision et fiabilité. Actuellement, la méthodologie employée consiste en des prélèvements ponctuels d’eau à pas de temps lâche (une fois par mois en général) suivi de l’analyse en laboratoire. Cette approche souffre d’un manque de représentativité temporelle, couplée à une sensibilité analytique souvent peu satisfaisante. Les techniques d’échantillonnage passif développées au cours des 20 dernières années pourraient être intégrées dans les réseaux de surveillance réglementaires afin de pallier ces manques, mais des questions subsistent encore quant à leur opérationnalité. Ces travaux de thèse visent à développer puis tester les échantillonneurs passifs sur le terrain afin de déterminer leur adéquation avec les exigences de la Directive cadre sur l’Eau, et le cas échéant, mettre en évidence les principaux verrous scientifiques résiduels. L’originalité de ce travail réside dans:- la variété des outils évalués : trois échantillonneurs différents ont été étudiés (Le Polar Organic Chemical Integrative Sampler (POCIS), le Chemcatcher et le Diffusive Gradient in Thin film (DGT). Les méthodes classiques de prélèvement ponctuels ont également été mise en œuvre.- la variété des environnements étudiés : deux bassins versant très différents ont été considérés, l’un présentant une contamination en pesticides forte, l’autre une contamination modérée.- La mise en en œuvre des échantillonneurs passifs dans un réel contexte réglementaire, les cours d’eau choisis faisant l’objet d’un contrôle opérationnel. Les données acquises avec les échantillonneurs passifs ont ainsi pu être comparées avec les suivis de l’Agence de l’Eau. / The intensive use of pesticides in agriculture and urban activities since the 1950s has led to diffuse contamination of environmental compartments (air, soil, water). The presence of these molecules can lead to toxic effects for biota. The implementation of the Water Framework Directive (WFD) requires the use of an efficient monitoring network, based on reliable sampling and analytical techniques. Nowadays, grab sampling followed by extraction of analytes and chromatographic analysis is the most widespread strategy because of its simplicity of implementation but it also has numerous drawbacks. The crux of the issue lies in the lack of temporal representativeness and the low analytical sensibility. An alternative strategy to overcome some of these problems could be the use of passive samplers. This contribution aims at discuss about the possible application of passive samplers in regulatory monitoring programs. The originality of this work lies in :The variety of tested devices: three different samplers was studied (The Polar Organic Chemical Integrative Sampler (POCIS), the Chemcatcher and the Diffusive Gradient in Thin Film (DGT). Conventional grab sampling strategies were also evaluated.The variety of studied environments: two very different watersheds were selected. The first one presented a high level of contamination; the second had a low contamination in pesticides.The implementation of passive samplers in a real regulatory context, as the selected streams were monitored by the Water Agency for operational control. Data from the Water Agency could therefore be compared with passive sampler data.

Page generated in 0.0751 seconds