• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 13
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 54
  • 54
  • 13
  • 12
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Développement et applications environnementales des échantillonneurs passifs pour la surveillance des écosystèmes aquatiques / Improvement and field application of passive samplers for monitoring of aquatic ecosystems

Belles, Angel 14 December 2012 (has links)
Pour une meilleure compréhension en gestion de la qualité de l’environnement le dosage des contaminants dans les différents compartiments naturels reste un premier pas vers l’élucidation de la dynamique des polluants et de leurs impacts sur les écosystèmes. Cependant les stratégies d’échantillonnage usuellement utilisées n’ont pas changé depuis l’avènement de la chimie analytique. Ces techniques consistent en général à prélever une certaine quantité de l’échantillon (eau, air, solide) afin d’en extraire les substances d’intérêt pour les doser. La question de la représentativité de telles pratiques se pose alors ; en effet pour un site donné la contamination peut être très variable au cours du temps et sur de faibles distances. La compréhension fine de la contamination d’un milieu en utilisant de telles techniques impose alors la multiplication des prélèvements dans le temps et l’espace.Depuis les années 80 mais surtout depuis le début des années 2000, des outils d’échantillonnage passif ont été mis au point dans de nombreux domaines permettant d’avoir un suivi de la contamination intégré dans le temps à moindre coût. Ces nouvelles approches consistent à prélever l’échantillon en continu et in-situ sans apport d’énergie, fournissant ainsi une valeur moyenne de la contamination.Afin de pouvoir utiliser ces dispositifs, un certain nombre de développements en laboratoire doivent être au préalable menés afin de déterminer les constantes cinétiques nécessaires pour déduire la contamination du milieu échantillonné à partir des résidus séquestrés par les échantillonneurs. Ainsi, dans le cadre de ces travaux, une sélection d’échantillonneurs existants ont été testés et adaptés en laboratoire puis évalués en conditions réelles sur divers sites environnementaux.Les développements en laboratoire ont eu pour objet de mettre au point différentes configurations d’outils dans le but d’être applicables au plus grand nombre de molécules et ce de la manière la plus quantitative possible. A titre d’exemple, des dispositifs adaptés ont été mis au point pour l’échantillonnage de molécules très polaires qui auparavant n’étaient pas efficacement échantillonnées par les dispositifs existants. Sur site, les outils d’échantillonnage ont principalement été mis en œuvre dans le cadre de programmes de recherche plus vastes et ont à ce titre pu être testés sur de grands terrains d’étude (Bassin d’Arcachon et Estuaire de la Gironde) et être comparés aux techniques d’échantillonnage ponctuels qui font actuellement référence. Les résultats fournis par les outils sont proches de ceux obtenus par échantillonnage ponctuel. Cependant l’aspect quantitatif apparaît probablement encore améliorable soit par l’usage de nouveaux composés référence de performance soit par mise au point de dispositifs plus robustes et faiblement impactés dans leurs performances par les conditions environnementales. / For a better understanding and management of the environmental quality, contaminant analysis in the various compartments is a natural first step in the understanding of the dynamics of pollutants and of their impacts on ecosystems. However sampling strategies commonly used have not changed since the advent of analytical chemistry. These techniques in general consist of taking a certain amount of sample (water, air, solid) to extract the substances of interest to assay. The issue of representativeness of such sampling practices arises since for a given site the contamination can vary over time and over short distances. Detailed understanding of the contamination of an ecosystem using such sampling techniques requires the multiplication of samples over time and space.Since the 80’s and more especially the beginning of 2000, passive sampling tools have been developed in many areas. They provide an integrated monitoring of contamination over time at low cost. These new approaches are based on the fact that the sample are taken continuously in-situ and without energy supply, thus providing an average value of the contamination.To use these devices, a number of laboratory developments must first be conducted to determine the kinetic constants to deduce the necessary characteristics of the environmental contamination. Thus, as part of this work, a selection of existing samplers has been tested and adapted in laboratory experiments and evaluated in real conditions at various environmental sites.Laboratory developments have been conducted to develop different configuration tools in order to be used for a wide range of pollutants with the best quantitative capacity. For example, suitable devices have been developed for sampling highly polar molecules which previously were not strongly sampled by existing devices.On-site, sampling tools were mainly implemented in the framework of broader research programs and consequently have been tested during large field studies (Bassin d'Arcachon, Gironde Estuary) to compare their performance to grab sampling techniques. The results provided by the tools are similar to those obtained by grab sampling. However, the quantitative aspect appears still improvable either by the use of new performance reference compounds or by using devices more robust and slightly affected in their performance by environmental conditions.
12

Membrane assisted passive sampler for aquatic organic chemicals: characterization of environmental conditions and field performance

Nyoni, Hlengilizwe 14 March 2011 (has links)
Membrane assisted passive sampler (MAPS) is an informative, cost-effective and environmentally friendly approach for monitoring of ionisable organic compounds in water bodies. The sampler uses no organic solvent. By adjusting the pH of the acceptor phase, both acidic chlorophenols and basic triazine model compounds were extracted. The sampler was optimized under laboratory conditions followed by field applications on the same compounds. The optimised parameters were temperature of the water body, turbulence, protective cover, biofouling, matrix effects such as humic substances, degree of trapping in the acceptor phase and exposure time. It was found that the sampling kinetics of most of the tested analytes are dependent on temperature and on the hydrodynamic conditions. Also, a strong dependence of the sampling rates reduction on sample matrix and protective cover used was noted. The chemical uptake of both the acidic chlorophenols and basic triazine compounds into the passive sampler remained linear and integrative through out the exposure periods. The amounts quantified in the MAPS had relative standard deviations mostly between 10 % and 20 % (from repeat determinations) and did in no case exceed 30 %. The behaviour of the MAPS to monitor ionisable triazine compounds in dam water of the Hartebeespoort was compared to Chemcatcher and solid phase extraction technique with C18 sorbents of spot samples. Similarly, the behaviour of the MAPS to monitor ionisable chlorophenol compounds in wastewater of the Goudkoppies Wastewater Treatment Plant was compared to solid phase extraction technique. There were no triazine and chlorophenol compounds detected in any of the deployed passive samplers in the field applications. The same results were obtained in grab samples extracted with solid phase extraction under laboratory conditions. However, data from laboratory studies support the feasibility of MAPS to measure the freely dissolved fraction of ionisable organic chemicals in water. Using water from the Hartebeespoort dam spiked with 50 μg L-1 triazine, the detection limits of triazine compounds ranged from 11.38 to 61.86 μg L-1 for direct injection, 1.082 to 23.077 μg L-1 for MAPS, 0.892 to 5.769 μg L-1 for Chemcatcher and 1.482 to 7.410 μg L-1 for SPE. While using water from Goudkoppies Wastewater Treatment Plant spiked with 100 μg L-1 chlorophenols, the detection limits of the passive sampler were comparable with that of solid phase extraction and were around 1.5 μg L-1. Estimation and interpretation of enrichment factors in the passive samplers and SPE were generally comparable ranging from 46 to 295 for chlorophenol compounds. Also, for triazine compounds, the obtained enrichment factors in the passive samplers and SPE are generally comparable with the exception of enrichment factors of propazine, ametryn terbuthylazine, prometryn and terbutryn compounds which were higher for the MAPS ranging from 46 to 65.
13

Dispositivo de amostragem passiva com papel e resina para monitoramento de metais potencialmente tóxicos em solo / Passive sampling device with paper and resin for monitoring potentially toxic metals in soil

Grandino, Débora Regina 07 December 2017 (has links)
A identificação de elementos potencialmente tóxicos em solos, a distribuição destes e sua disponibilidade química são importantes para a avaliação de risco ambiental, diagnóstico esse imprescindível para um desenvolvimento sustentável com segurança dos alimentos, da água, da energia, da estabilidade climática, da manutenção da biodiversidade e do ecossistema. Usualmente, a identificação de áreas contaminadas exige a coleta e análise de um número elevado de amostras de solo, que consequentemente elevam os custos e demandam muitas horas de trabalho. Neste sentido, estratégias que permitem determinações mais rápidas a baixo custo e eficientes são desejáveis. Estratégias de amostragem passiva têm sido desenvolvidas para superar as limitações da análise química convencional, além de possuir vantagens adicionais que permitem incorporar a esse diagnóstico as influências edáficas do local amostrado. Outra forma de reduzir custo e aumentar a frequência analítica é o uso de técnicas de análise direta de sólidos, que eliminam ou minimizam o preparo da amostra, e consequentemente o tempo de análise. Visando contribuir no desenvolvimento da amostragem em campo e técnicas de análise direta em sólidos, este trabalho teve por objetivo desenvolver, avaliar e validar um dispositivo de amostragem passiva composto por papel e resina além de comparar aspectos técnicos entre procedimentos convencionais e as técnicas analíticas de análise direta de sólidos: Fluorescência de Raios X (XRF) e Espectrometria de Emissão Óptica Induzida por Laser (LIBS). Para avaliar o conceito foi realizado mapeamento do solo de uma área experimental supostamente contaminada, analisando o conjunto de dados com o auxílio de ferramentas matemáticas de interpolação baseadas na técnica de Krigagem. Testes foram realizados com o intuito de se determinar a melhor forma de acoplamento, condicionamento, processo de adsorção e extração dos elementos de ambas as partes do dispositivo (papel e resina). As duas técnicas de análise direta de sólidos também foram testadas. A XRF trouxe informações com base na distribuição dos elementos, depois de adsorvidos, no papel e na resina, porém não apresentou viabilidade e capacidade (por ter alto background) na quantificação dos elementos. O LIBS mostrou-se promissor para quantificação dos elementos, proporcionando boa correlação com as concentrações presentes no solo, na resina mais (por esta adsorver mais uniformemente os elementos) que no papel e por ser rápido, além de multielementar. Quando inserido em solo contaminado (com altas concentrações dos metais), o dispositivo apresentou ótimas correlações com a quantidade adicionada e com as intensidades fornecidas pelo LIBS. Porém, quando há baixas concentrações não houve uma relação definida entre os diferentes tipos de extração. Acredita-se que o dispositivo tenha potencial para quantificação de elementos potencialmente tóxicos em solos contaminados, por ter respondido bem a extração e determinação neste tipo de solo / Identification of potentially toxic elements in soils, their distribution and their chemical availability are important for environmental risk assessment, an essential diagnostic for sustainable development with security food, water, energy, climate stability, biodiversity and the ecosystem. Usually, the identification of contaminated areas requires the collection and analysis of a large number of soil samples, which consequently raise costs and require many hours of work. In this sense, strategies that allow faster, cost-effective and efficient determinations are desirable. Passive sampling strategies have been developed to overcome the limitations of conventional chemical analysis, besides possessing additional advantages that allow incorporating to this diagnosis the edaphic influences of the sampled site. Another way of reducing cost and increasing analytical frequency is the use of direct solids analysis techniques, which eliminate or minimize the sample preparation, and consequently the analysis time. Aiming to contribute to the development of field sampling and direct solid analysis techniques, the objective of this work was to develop, evaluate and validate a passive sampling device composed of paper and resin and to compare technical aspects between conventional procedures and analytical analysis techniques direct solids: X-ray Fluorescence (XRF) and Laser Induced Optical Emission Spectrometry (LIBS). In order to evaluate the concept, a soil mapping of a supposedly contaminated experimental area was carried out, analyzing the data set with the aid of mathematical interpolation tools based on the Kriging technique. Tests were performed with the purpose of determining the best way of coupling, conditioning, adsorption and extraction of the elements of both parts of the device (paper and resin). The two techniques of direct solids analysis were also tested. The XRF provided information based on the distribution of the adsorbed elements on paper and resin, but it did not present viability and capacity (because of the high background) in the quantification of the elements. The LIBS showed promise for the quantification of the elements, providing a good correlation with the concentrations present in the soil, in the resin more (by this more uniformly adsorb the elements) than in the paper and because it is fast, besides multielementar. When inserted into contaminated soil (with high concentrations of metals), the device showed excellent correlations with the amount added and the intensities provided by the LIBS. However, when there are low concentrations there was no definite relation between the different types of extraction. It is believed that the device has potential for quantification of potentially toxic elements in contaminated soils, since it has responded well to extraction and determination in this type of soil
14

Dispositivo de amostragem passiva com papel e resina para monitoramento de metais potencialmente tóxicos em solo / Passive sampling device with paper and resin for monitoring potentially toxic metals in soil

Débora Regina Grandino 07 December 2017 (has links)
A identificação de elementos potencialmente tóxicos em solos, a distribuição destes e sua disponibilidade química são importantes para a avaliação de risco ambiental, diagnóstico esse imprescindível para um desenvolvimento sustentável com segurança dos alimentos, da água, da energia, da estabilidade climática, da manutenção da biodiversidade e do ecossistema. Usualmente, a identificação de áreas contaminadas exige a coleta e análise de um número elevado de amostras de solo, que consequentemente elevam os custos e demandam muitas horas de trabalho. Neste sentido, estratégias que permitem determinações mais rápidas a baixo custo e eficientes são desejáveis. Estratégias de amostragem passiva têm sido desenvolvidas para superar as limitações da análise química convencional, além de possuir vantagens adicionais que permitem incorporar a esse diagnóstico as influências edáficas do local amostrado. Outra forma de reduzir custo e aumentar a frequência analítica é o uso de técnicas de análise direta de sólidos, que eliminam ou minimizam o preparo da amostra, e consequentemente o tempo de análise. Visando contribuir no desenvolvimento da amostragem em campo e técnicas de análise direta em sólidos, este trabalho teve por objetivo desenvolver, avaliar e validar um dispositivo de amostragem passiva composto por papel e resina além de comparar aspectos técnicos entre procedimentos convencionais e as técnicas analíticas de análise direta de sólidos: Fluorescência de Raios X (XRF) e Espectrometria de Emissão Óptica Induzida por Laser (LIBS). Para avaliar o conceito foi realizado mapeamento do solo de uma área experimental supostamente contaminada, analisando o conjunto de dados com o auxílio de ferramentas matemáticas de interpolação baseadas na técnica de Krigagem. Testes foram realizados com o intuito de se determinar a melhor forma de acoplamento, condicionamento, processo de adsorção e extração dos elementos de ambas as partes do dispositivo (papel e resina). As duas técnicas de análise direta de sólidos também foram testadas. A XRF trouxe informações com base na distribuição dos elementos, depois de adsorvidos, no papel e na resina, porém não apresentou viabilidade e capacidade (por ter alto background) na quantificação dos elementos. O LIBS mostrou-se promissor para quantificação dos elementos, proporcionando boa correlação com as concentrações presentes no solo, na resina mais (por esta adsorver mais uniformemente os elementos) que no papel e por ser rápido, além de multielementar. Quando inserido em solo contaminado (com altas concentrações dos metais), o dispositivo apresentou ótimas correlações com a quantidade adicionada e com as intensidades fornecidas pelo LIBS. Porém, quando há baixas concentrações não houve uma relação definida entre os diferentes tipos de extração. Acredita-se que o dispositivo tenha potencial para quantificação de elementos potencialmente tóxicos em solos contaminados, por ter respondido bem a extração e determinação neste tipo de solo / Identification of potentially toxic elements in soils, their distribution and their chemical availability are important for environmental risk assessment, an essential diagnostic for sustainable development with security food, water, energy, climate stability, biodiversity and the ecosystem. Usually, the identification of contaminated areas requires the collection and analysis of a large number of soil samples, which consequently raise costs and require many hours of work. In this sense, strategies that allow faster, cost-effective and efficient determinations are desirable. Passive sampling strategies have been developed to overcome the limitations of conventional chemical analysis, besides possessing additional advantages that allow incorporating to this diagnosis the edaphic influences of the sampled site. Another way of reducing cost and increasing analytical frequency is the use of direct solids analysis techniques, which eliminate or minimize the sample preparation, and consequently the analysis time. Aiming to contribute to the development of field sampling and direct solid analysis techniques, the objective of this work was to develop, evaluate and validate a passive sampling device composed of paper and resin and to compare technical aspects between conventional procedures and analytical analysis techniques direct solids: X-ray Fluorescence (XRF) and Laser Induced Optical Emission Spectrometry (LIBS). In order to evaluate the concept, a soil mapping of a supposedly contaminated experimental area was carried out, analyzing the data set with the aid of mathematical interpolation tools based on the Kriging technique. Tests were performed with the purpose of determining the best way of coupling, conditioning, adsorption and extraction of the elements of both parts of the device (paper and resin). The two techniques of direct solids analysis were also tested. The XRF provided information based on the distribution of the adsorbed elements on paper and resin, but it did not present viability and capacity (because of the high background) in the quantification of the elements. The LIBS showed promise for the quantification of the elements, providing a good correlation with the concentrations present in the soil, in the resin more (by this more uniformly adsorb the elements) than in the paper and because it is fast, besides multielementar. When inserted into contaminated soil (with high concentrations of metals), the device showed excellent correlations with the amount added and the intensities provided by the LIBS. However, when there are low concentrations there was no definite relation between the different types of extraction. It is believed that the device has potential for quantification of potentially toxic elements in contaminated soils, since it has responded well to extraction and determination in this type of soil
15

Nanofiber-enabled multi-target passive sampling device for legacy and emerging organic contaminants

Qian, Jiajie 01 August 2018 (has links)
The widespread environmental occurrence of chemical pollutants presents an ongoing threat to human and ecosystem health. This challenge is compounded by the diversity of chemicals used in industry, commerce, agriculture and medicine, which results in a spectrum of potential fates and exposure profiles upon their inevitable release into the environment. This, in turn, confounds risk assessment, where challenges persist in accurate determination of concentrations levels, as well as spatial and temporal distributions, of pollutants in environmental media (e.g., water, air, soil and sediments). Passive sampling technologies continue to gain acceptance as a means for simplifying environmental occurrence studies and, ultimately, improving the quality of chemical risk assessment. Passive samplers rely on the accumulation of a target analyte into a matrix via molecular diffusion, which is driven by the difference in chemical potential between the analyte in the environment and the sampling media (e.g., sorbent phase). After deployment, the target analyte can be extracted from the sampling media and quantified, providing an integrated, time-weighted average pollutant concentration via a cost-effective platform that requires little energy or manpower when compared to active (e.g., grab) sampling approaches. While a promising, maturing technology, however, limitations exist in current commercially available passive samplers; they are typically limited in the types of chemicals that can be targeted effectively, can require long deployment times to accumulate sufficient chemical for analysis, and struggle with charged analytes. In this dissertation, we have designed a next-generation, nanofiber sorbent as a passive sampling device for routine monitoring of both legacy and emerging organic pollutant classes in water and sediment. The polymer nanofiber networks fabricated herein exhibit a high surface area to volume ratio (SA/V values) which shortens the deployment time. Uptake studies of these polymer nanofiber samplers suggest that field deployment could be shortened to less than one day for surface water analysis, effectively operating as an equilibrium passives sampling device, and twenty days for pore water analysis in soil and sediment studies. By comparison, most commercially available passive sampler models generally require at least a month of deployment before comparable analyses may be made. Another highlight of the nanofiber materials produced herein is their broad target application range. We demonstrate that both hydrophobic (e.g., persistent organic pollutants, or POPs, like PCBs and dioxin) and hydrophilic (e.g., emerging pollutant classes including pesticides, pharmaceuticals and personal care products) targets can be rapidly accumulated with our optimal nanofibers formulations. This suggests that one of our devices could potentially replace multiple commercial passive sampling devices, which often exhibit a more limited range of analyte targets. We also present several approaches for tailoring nanofiber physical and chemical properties to specifically target particular high priority pollutant classes (e.g., PFAS). Three promising modification approaches validated herein include: (i) fabricating carbon nanotube-polymer composites to capture polar compounds; (ii) introducing surface-segregating cationic surfactants to target anionic pollutants (e.g., the pesticide 2,4-D and perfluorooctanoic acid or PFOA); and (iii) use of leachable surfactants as porogens to increase nanofiber pore volume and surface area to increase material capacity. Collectively, outcomes of this work will guide the future development of next generation passive samplers by establishing broadly generalizable structure-activity relationships. All told, we present data related to the influence on the rate and extent of pollutant uptake in polymer nanofiber matrices as a function of both physical (specific surface area, pore volume, and diameter) and chemical (e.g., bulk and surface composition, nanofiber wettability, surface charge) nanofiber properties. We also present modeling results describing sampler operation that can be used to assess and predict passive sampler performance prior to field deployment. The electrospun nanofiber mats (ENMs) developed as passive sampling devices herein provide greater functionality and allow for customizable products for application to a wide range of chemical diverse organic pollutants. Combined with advances in and expansion of the nanotechnology sector, we envision this product could be made commercially available so as to expand the use and improve the performance of passive sampling technologies in environmental monitoring studies.
16

Use Of passive samplers to characterize the spatial heterogeneity of coarse particle mass concentration and composition in Cleveland, OH

Sawvel, Eric J. 01 December 2013 (has links)
The overall goals of this dissertation are: 1) to better quantify the spatial heterogeneity of coarse particulate matter (PM10-2.5) and its chemical composition; and 2) to evaluate the performance (accuracy and precision) of passive samplers analyzed by computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy (CCSEM-EDS) for PM10-2.5. For these goals, field studies were conducted over multiple seasons in Cleveland, OH and were the source of data for this dissertation. To achieve the first goal, we characterized spatial variability in the mass and composition of PM10-2.5 in Cleveland, OH with the aid of inexpensive passive samplers. Passive samplers were deployed at 25 optimized sites for three week-long intervals in summer 2008 to characterize spatial variability in components of PM10-2.5. The size and composition of individual particles were determined using CCSEM-EDS. For each sample, this information was used to estimate PM10-2.5 mass and aerosol composition by particle class. The highest PM10-2.5 means were observed at three central industrial urban sites (35.4 Μg m-3, 43.4 Μg m-3, and 47.6 Μg m-3), whereas lower means were observed to the west and east of this area with the lowest means observed at outskirt suburban background sites (12.9 Μg m-3 and 14.7 Μg m-3). Concentration maps for PM10-2.5 and some compositional components of PM10-2.5 (Fe oxide and Ca rich) show an elongated shape of high values stretching from Lake Erie south through the central industrial area, whereas those for other compositional components (e.g., Si/Al rich) are considerably less heterogeneous. The findings from the spatial variability of coarse particles by compositional class analysis, presented in Chapter II of this dissertation, show that the concentrations of some particle classes were substantially more spatially heterogeneous than others. The data suggest that industrial sources located in The Flats district in particular may contribute to the observed concentration variability and heterogeneity. Lastly, percent relative spatial heterogeneity (SH%) is more consistent with spatial heterogeneity as visualized in the concentration surface maps compared to the coefficient of divergence (COD). The second goal was achieved by assessing the performance of passive samplers analyzed by CCSEM-EDS to measure PM10-2.5 (Chapter III) and investigating potential sources of variability in the measurement of PM10-2.5 with passive samplers analyzed by CCSEM-EDS (Chapter IV). Data for these analyses were obtained in studies conducted in summer 2009 and winter 2010. The precision of PM10-2.5 measured with the passive samplers was highly variable and ranged from a low coefficient of variation (CV) of 2.1% to a high CV of 90.8%. Eighty percent of the CVs were less than 40%. This assessment showed the CV for passive samplers was greater than that recommended by the United States Environmental Protection Agency (EPA) guidelines for the Federal Reference Method (FRM). Several CV values were high, exceeding 40% indicating substantially dissimilar results between co-located passive samplers. The overall CV for the passive samplers was 41.2% in 2009 and 33.8% in 2010. The precision when high CVs > 40% (n = 5 of 25) were excluded from the analysis was 24.1% in 2009 and 18.2% for 2010. Despite issues with precision, PM10-2.5 measured with passive samplers agreed well with that measured with FRM samplers with accuracy approaching EPA Federal Equivalent Method (FEM) criteria. The intercept was 1.21 and not statistically significant (p = 3.88). The passive to FRM sampler comparison (1:1) line fell within the 95% confidence interval (CI) for the best-fit linear regression and was statistically significant (p < 0.05). However, several data points had large standard deviations resulting in high variability between co-located passive samplers (n = 3), which extend outside of the 95% CI's. The passive sampler limit of detection (LOD) for the CCSEM method was 2.8 Μg m-3. This study also showed certain samples had higher CVs and that further investigation was needed to better understand the sources of variability in the measurement of PM10-2.5 with passive samplers. Sources of variability observed in the measurement of PM10-2.5 with passive samplers analyzed by CCSEM were explored in Chapter IV of this dissertation. This research suggests mass concentrations greater than 20 Μg m-3 for week long samples are needed on the passive sampler substrate to obtain overall CVs by mass less than 15%. It also suggests that greater than 55 particle counts within a compositional class are needed to reduce analytical CVs to less than 15%. Another finding from this study was increasing the concentration from 6.2 to 10.6 Μg m-3 increases the CCSEM analytical precision by mass 38% and by number 75% for random orientation. Also certain compositional classes appeared problematical for precision of passive sampler measurements. For example, the presence of salt plus moisture introduces challenges for CCSEM analysis through the wetting of salt crystalline particles which dissolve creating a displaced dry deposition pattern of particles upon subsequent evaporation. This process can falsely elevate or reduce the particle count and alter its distribution on the sampling media.
17

Investigation Of Passive Sampling Of No2 And O3 In Ambient Air And Determination Of The Effects Of Meteorological Parameters To The Uptake Rate

Bayindir, Elif 01 December 2008 (has links) (PDF)
In this study NO2 and O3 gases which are the secondary pollutants in ambient air were sampled with designed passive tubes. The collected samples were extracted for UV-VIS spectrometric analysis. NO2 gases were converted to NO2- ions by extracting with water and then this solution was colored with Saltzman reagent (5:1 sulfanilamide and N-(1 naphthly)-ethlyene-diamine dihydrochloride). Then the absorbance of the solution was measured at 537 nm. O3 was extracted with 3-metyl-2-benzothiazolinone hydrozone hydrochloride solution which gives yellow color after extraction. The absorbance of the solution was measured at 430 nm. Before starting the experiment, the exposure time was optimized. For this purpose, 15 days in winter and 65 days in summer samplings were conducted. For both NO2 and O3 it was decided that 7 days of sampling period was required as an optimum sampling time in order to reach maximum collection efficiency values for both pollutants. To determine the uptake rates of the passive tubes, NO2 was sampled in fifteen weeks and O3 was sampled in thirteen weeks. During each sampling period passive tubes were placed nearby the active air sampling stations of Refik Saydam Hygiene Center, Air Quality Control and Research Laboratory in Ulus and Ke&ccedil / i&ouml / ren. Then uptake rates of NO2 and O3 passive tubes were determined by comparing passive and active sampler data. The uptake rate was calculated for NO2 and O3 as 0.91 x 103 cm3 h-1 and 1.71 x 103, respectively. Since sampling was done in ambient air the effect of meteorological parameters should be determined. Each meteorological parameters, wind speed, wind direction, relative humidity, temperature, pressure and solar ration were correlated with uptake rates. It was found out that none of these parameters had a significant effect on NO2 passive tube uptake rate. However, O3 passive tubes were affected from temperature, solar radiation and relative humidity. Temperature and solar radiation showed positive correlation with uptake rate, on the contrary, relative humidity was inversely correlated with uptake rate. Finally the pollution map of Ankara was created by taking samples from forty points in the city.
18

Spatial Distribution of Nitrogen Oxides, Benzene, Toluene, Ethylbenzene, and Xylenes in Hillsborough County, Florida: An Investigation of Impacts of Urban Forests on Ambient Concentrations of Air Pollutants Associated with Traffic

Sears, Jill 01 January 2013 (has links)
Urban air pollution is responsible for high levels of morbidity and mortality in exposed populations due to its effects on cardiovascular and respiratory function. Transportation-related air pollutants account for the majority of harmful air pollution in urban areas. Forests are known to reduce air pollution through their ability to facilitate dry deposition and atmospheric gas exchange. This work characterizes the interactions between transportation air pollutants and urban forests in Hillsborough County, Florida. A highly spatially resolved passive air sampling campaign was conducted to characterize local concentrations of nitrogen oxides, benzene, toluene, ethylbenzene, and xylenes (BTEX) in Hillsborough County, Florida. Sampling locations included a proportion of densely forested urban areas in order to determine the effects of Hillsborough County's urban forest resources on localized concentrations of selected transportation pollutants. Recommended approaches for the use of urban forests as an effective air pollution mitigation technique in Hillsborough County were generated based on results from the sampling campaign. Results show mean concentrations of 2.1 parts per billion and 6.5 µg/m3 for nitrogen oxides and total BTEX, respectively. High spatial variability in pollutant concentrations across Hillsborough County was observed, with the coefficient of variation found to be 0.61 for nitrogen oxides and 0.79 for total BTEX. Higher concentrations were observed along interstate highways, in urban areas of the county, and near select point sources in rural areas. Differences in concentrations within forested areas were observed, but were not statistically significant at the 95%#37; confidence level. These results can be used to identify elements of urban design which contribute to differences in concentrations and exposures. This information can be used to create more sustainable urban designs which promote health and equity of the population.
19

Fiabilisation de la quantification des éléments traces cationiques et anioniques par la technique d'échantillonnage DGT en milieu aquatique naturel / Increasing the reliability of the DGT technique for quantifying cationic and anionic trace elements in natural water

Devillers, Delphine 23 October 2017 (has links)
La technique d’échantillonnage passif DGT (« Diffusive Gradients in Thin Films ») possède de nombreux avantages (intégration des variations temporelles, abaissement des limites de quantification) qui font d’elle une méthode prometteuse pour une utilisation en réseaux de mesure pour quantifier les éléments traces dans les eaux naturelles. Cependant, il existe encore des zones d’ombre qui constituent des freins à son utilisation dans un contexte réglementaire. Ce travail a donc pour objectif d’identifier des biais potentiels et ainsi contribuer à fiabiliser la méthode. Cette étude montre que l’obtention d’un résultat avec une incertitude minimisée doit passer par la détermination expérimentale des facteurs d’élution ; cependant, l’utilisation d’une valeur standard de 0,8 pour le Cr(III) et de 0,85 pour Al(III), Cd(II), Co(II), Cu(II), Ni(II), Pb(II) et Zn(II) est proposée afin d’alléger les manipulations tout en conservant une incertitude raisonnable (<10%). L’étude de l’influence de l’encrassement des dispositifs DGT a montré que la sorption des cations Cd(II), Cu(II) et Pb(II) sur les filtres encrassés affectent respectivement peu, modérément et fortement leur accumulation dans les échantillonneurs et donc leur quantification. Des durées d’exposition de moins d’une semaine sont alors préconisées pour ces éléments. En revanche, l’encrassement a eu un impact négligeable sur le Ni(II) et sur les oxyanions As(V), Cr(VI), Sb(V) et Se(VI). Enfin, une méthode de quantification simultanée du Cr(III), essentiel à la vie, et du Cr(VI), toxique, a été développée en vue d’améliorer l’évaluation de la toxicité d’une eau. Un unique échantillonneur DGT fixe les deux formes tandis qu’elles sont ensuite sélectivement séparées par une étape d’élution. Cette méthode est robuste sur une large gamme de forces ioniques et de concentrations en sulfate mais sur une gamme de pH plus restreinte ne couvrant pas toutes les eaux naturelles (4 à 6). / The passive sampling DGT technique (Diffusive Gradients in Thin Films) has a lot of benefits (time-weighted average concentrations, low limits of quantification) and would therefore be a useful tool for monitoring studies to quantify trace elements in natural water. However, there are still some limitations and grey areas that put the brakes on the development of the method for regulatory applications. The aim of this work is to identify potential biases and contribute to increase the method reliability. This study shows that a minimized uncertainty on results can be obtained only if elution factors are experimentally determined; however, standard values of 0.8 for Cr(III) and 0.85 for Al(III), Cd(II), Co(II), Cu(II), Ni(II), Pb(II) and Zn(II) are suggested to reduce manipulations while keeping reasonable uncertainty (<10%). Studying the influence of fouling developed on DGT devices showed that the sorption of cations Cd(II), Cu(II) and Pb(II) had, respectively, a slight, moderate and strong impact on their accumulation in DGT samplers and therefore on their quantification. Samplers should then be deployed for less than one week. In contrast, fouling had a negligible impact on oxyanions As(V), Cr(VI), Sb(V) and Se(VI). Finally, a method was developed to simultaneously quantify both Cr oxidation states naturally occurring in natural waters, which are Cr(III), essential to life, and Cr(VI), toxic. Both forms are accumulated in a single DGT sampler before being selectively separated during an elution step. This method is robust for wide ranges of ionic strengths and sulfate concentrations but for a narrower range of pH (4 to 6).
20

Contaminated sediments: Methods to assess release and toxicity of organic chemical mixtures

Mustajärvi, Lukas January 2017 (has links)
Bottom sediments around the world store large amounts of legacy hydrophobic organic contaminants (HOCs), forming mixtures of unknown chemical composition. Primary emissions to the environment of many HOCs have been reduced as a consequence of regulation. However, HOCs may be released from the sediments to water and biota, and there is therefore a risk of negative effects on local ecosystems. The activity of benthic organisms can enhance the sediment-to-water flux of HOCs, a process called bioturbation. Few in situ assessments of the sediment-to-water flux are available in the scientific literature, and the effect of bioturbation on the sediment-to-water flux of HOCs has not been studied in the field. Thus, there is a need to improve in situ methods for direct determination of sediments as a source of HOCs to water, and thereby include the effect of bioturbation. In Paper I, a benthic flow-through chamber was developed for environmentally realistic in situ assessments of the sediment-to-water flux. In Paper II, the sediment-to-water flux of polycyclic aromatic hydrocarbons (PAHs) was assessed using the flow-through chamber at four sites on the Swedish Baltic Sea coast. The sediments at all four sites acted as sources of PAHs to water. In the same study, potential effects of bioturbation, with an increase of the sediment-to-water flux by up to one order of magnitude, were observed at sites with bioturbating organisms. In the past, assessing the toxicity of HOCs has been challenging due to difficulties in maintaining stable exposure concentrations of the test chemical. In Paper III, a passive dosing method, where the test chemical partitions from a polymer (silicone) to the aquatic exposure medium, was developed and tested for chronic exposure. A stable exposure concentration could be maintained, and the chronic toxicity to the sediment-dwelling harpacticoid Nitocra spinipes of chronic exposure to triclosan was assessed in a 6-week population development test. In Paper IV, a passive sampling and dosing method was developed and used to assess the toxicity of an environmental chemical mixture of bioavailable sediment-associated HOCs transferred from a contaminated sediment to the laboratory-based bioassay. The passive sampling and dosing method can be used to assess the toxicity of environmental mixtures of chemicals at environmentally realistic concentrations to which ecosystems are constantly exposed. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript.</p>

Page generated in 0.0816 seconds