Spelling suggestions: "subject:"pathplanning"" "subject:"teachingplanning""
351 |
Des métaheuristiques pour le guidage d’un solveur de contraintes dédié à la planification automatisée de véhicules / Metaheuristics for the guidance of a constraint solver dedicated to automated vehicle planningLucas, François 12 July 2012 (has links)
Cette thèse, réalisée en collaboration avec Sagem Défense Sécurité, porte sur l'élaboration d'une stratégie de recherche efficace pour la résolution de problèmes de planification d'itinéraires de véhicules. Nous considérons ici en particulier les problèmes de planification avec contraintes de points de passage et de "capacité" (énergie, bande passante radio) appliquées au véhicule. Ce document propose une approche originale, hybridant un algorithme de colonies de fourmis avec un solveur de Programmation par Contraintes existant. Le premier est utilisé pour résoudre rapidement une version relaxée du problème. La solution partielle obtenue est alors employée pour guider la recherche du second, par le biais d'une méthode de sonde, vers les zones les plus prometteuses de l'espace d'état. Cette approche permet ainsi de combiner la rapidité des métaheuristiques et la complétude de la programmation par contraintes. Nous montrons expérimentalement que cette approche satisfait les exigences pour une utilisation du planificateur dans un cadre embarqué. / This thesis, led in collaboration with Sagem Defence & Security, focuses on defining an efficient search strategy to solve vehicle path planning problems. This work addresses more precisely planning problems in which waypoints and "capacity" constraints (energy, radio bandwidth) are applied to vehicles.This document proposes an original approach, mixing an Ant Colony algorithm with an existing Constraint Programming solver. The former is used to fastly solve a relaxed version of the problem. The partial solution returned is then employed to guide the search of the latter, through a Probe Backtrack mechanism, towards the most promising areas of the state space. This approach allows to combine the metaheuristics solving fastness and the Constraint Programming completeness. We experimentally show that this approach meets the requirements for an on-line use of the planner.
|
352 |
Approximation de fonctions et de données discrètes au sens de la norme L1 par splines polynomiales / Function and data approximation in L1 norm by polynomial splinesGajny, Laurent 15 May 2015 (has links)
L'approximation de fonctions et de données discrètes est fondamentale dans des domaines tels que la planification de trajectoire ou le traitement du signal (données issues de capteurs). Dans ces domaines, il est important d'obtenir des courbes conservant la forme initiale des données. L'utilisation des splines L1 semble être une bonne solution au regard des résultats obtenus pour le problème d'interpolation de données discrètes par de telles splines. Ces splines permettent notamment de conserver les alignements dans les données et de ne pas introduire d'oscillations résiduelles comme c'est le cas pour les splines d'interpolation L2. Nous proposons dans cette thèse une étude du problème de meilleure approximation au sens de la norme L1. Cette étude comprend des développements théoriques sur la meilleure approximation L1 de fonctions présentant une discontinuité de type saut dans des espaces fonctionnels généraux appelés espace de Chebyshev et faiblement Chebyshev. Les splines polynomiales entrent dans ce cadre. Des algorithmes d'approximation de données discrètes au sens de la norme L1 par procédé de fenêtre glissante sont développés en se basant sur les travaux existants sur les splines de lissage et d'ajustement. Les méthodes présentées dans la littérature pour ces types de splines peuvent être relativement couteuse en temps de calcul. Les algorithmes par fenêtre glissante permettent d'obtenir une complexité linéaire en le nombre de données. De plus, une parallélisation est possible. Enfin, une approche originale d'approximation, appelée interpolation à delta près, est développée. Nous proposons un algorithme algébrique avec une complexité linéaire et qui peut être utilisé pour des applications temps réel. / Data and function approximation is fundamental in application domains like path planning or signal processing (sensor data). In such domains, it is important to obtain curves that preserve the shape of the data. Considering the results obtained for the problem of data interpolation, L1 splines appear to be a good solution. Contrary to classical L2 splines, these splines enable to preserve linearities in the data and to not introduce extraneous oscillations when applied on data sets with abrupt changes. We propose in this dissertation a study of the problem of best L1 approximation. This study includes developments on best L1 approximation of functions with a jump discontinuity in general spaces called Chebyshev and weak-Chebyshev spaces. Polynomial splines fit in this framework. Approximation algorithms by smoothing splines and spline fits based on a sliding window process are introduced. The methods previously proposed in the littérature can be relatively time consuming when applied on large datasets. Sliding window algorithm enables to obtain algorithms with linear complexity. Moreover, these algorithms can be parallelized. Finally, a new approximation approach with prescribed error is introduced. A pure algebraic algorithm with linear complexity is introduced. This algorithm is then applicable to real-time application.
|
353 |
Efficient Mission Planning for Robot Networks in Communication Constrained Environmentsrahman, md mahbubur 06 June 2017 (has links)
Many robotic systems are remotely operated nowadays that require uninterrupted connection and safe mission planning. Such systems are commonly found in military drones, search and rescue operations, mining robotics, agriculture, and environmental monitoring. Different robotic systems may employ disparate communication modalities such as radio network, visible light communication, satellite, infrared, Wi-Fi. However, in an autonomous mission where the robots are expected to be interconnected, communication constrained environment frequently arises due to the out of range problem or unavailability of the signal. Furthermore, several automated projects (building construction, assembly line) do not guarantee uninterrupted communication, and a safe project plan is required that optimizes collision risks, cost, and duration. In this thesis, we propose four pronged approaches to alleviate some of these issues: 1) Communication aware world mapping; 2) Communication preserving using the Line-of-Sight (LoS); 3) Communication aware safe planning; and 4) Multi-Objective motion planning for navigation.
First, we focus on developing a communication aware world map that integrates traditional world models with the planning of multi-robot placement. Our proposed communication map selects the optimal placement of a chain of intermediate relay vehicles in order to maximize communication quality to a remote unit. We also vi propose an algorithm to build a min-Arborescence tree when there are multiple remote units to be served. Second, in communication denied environments, we use Line-of-Sight (LoS) to establish communication between mobile robots, control their movements and relay information to other autonomous units. We formulate and study the complexity of a multi-robot relay network positioning problem and propose approximation algorithms that restore visibility based connectivity through the relocation of one or more robots. Third, we develop a framework to quantify the safety score of a fully automated robotic mission where the coexistence of human and robot may pose a collision risk. A number of alternate mission plans are analyzed using motion planning algorithms to select the safest one. Finally, an efficient multi-objective optimization based path planning for the robots is developed to deal with several Pareto optimal cost attributes.
|
354 |
Planejamento de trajetória para estacionamento de veículos autônomos / Path planning for autonomous vehicles parkingMarcos Gomes Prado 01 March 2013 (has links)
A navegação autônoma é um dos problemas fundamentais na área de robótica móvel. Esse problema vem sendo pesquisado nessa área por décadas e ainda apresenta um grande potencial para pesquisas científicas. A maior parte dos algoritmos e soluções desenvolvidas nessa área foi concebida para que robôs operem em ambientes estruturados. No entanto, outra questão de grande interesse para pesquisadores da área é a navegação em ambientes externos. Em ambientes não estruturado os veículos autônomos (robôs de grande porte) devem ser capazes de desviar de obstáculos, que eventualmente apareçam no caminho. Esta dissertação aborda o desenvolvimento de um sistema inteligente capaz de gerar e executar um planejamento de caminho para o estacionamento de veículos autônomos em ambientes semi-estruturados. O sistema é capaz de reconhecer vagas de estacionamento por meio de sensores instalados no veículo, gerar uma trajetória válida que o conduza até a vaga e enviar os comandos de esterçamento e aceleração que guiam o veículo pelo caminho gerado / Autonomous navigation is one of the fundamental problems in mobile robotics. This problem has been addressed for decades and still has great potential for scientific research. Most solutions and algorithms developed in this field is designed for robots that operate in structured environments. However, another issue of great interest to researchers in this area is autonomous navigation in outdoor environments. In partially structured environments autonomous vehicles (large robots) must be able to avoid obstacles that may arise along the way. This dissertation addresses the development of an intelligent system able to generate and run a path planning for parking of autonomous vehicles in semi-structured environments. The system is able to recognize parking lots using sensors installed in the vehicle, generate a valid path that leads up to the parking lot and send the steering commands and acceleration that to guide the vehicle to its goal point
|
355 |
Dynamic Mission Planning for Unmanned Aerial VehiclesRennu, Samantha R. January 2020 (has links)
No description available.
|
356 |
Vizualizace algoritmů pro plánování cesty / Path Planning Algorithms VisualisationŘepka, Michal January 2018 (has links)
Finding of collision free path is central in creation of mobile, autonomous robot. Goal of this paper is to show the most important algorithms implementing such solutions. It also describes application that is being created to allow students experiment with these methods. For this purpose it uses library that was introduced by Jakub Rusnák in 2017, which means this is a continuation and possibly extension of his work.
|
357 |
Plánování trasy pro autonomní robotickou sekačku / Coverage Path Planning for Autonomous Robotic Lawn MowerMoninec, Michal January 2021 (has links)
This diploma thesis is covering the coverage path planning problem for autonomous robotic lawn mower in an area, which is fully defined before and is not changing. It contains a review of the currently used methods and an implementation of a software with a graphic user interface, which is capable of generating optimalized path.
|
358 |
Řízení pohybu modelu průmyslového robota / Movement control of an industrial robot modelSmrčka, Jiří January 2011 (has links)
The thesis aims to put in practice control unit of industrial robot ROB 2-6. The control unit is put in practice with the use of processor from the ARM STM32F100 family. Altogether with the control module it is supposed to be also realized HMI which will enable program loading and servicing of the control unit. The visualization model and algorithm of track planning is also realized within this work.
|
359 |
Expert Systems and Advanced Algorithms in Mobile Robots Path Planning / Expert Systems and Advanced Algorithms in Mobile Robots Path PlanningAbbadi, Ahmad January 2016 (has links)
Metody plánování pohybu jsou významnou součástí robotiky, resp. mobilních robotických platforem. Technicky je realizace plánování pohybu z globální úrovně převedena do posloupnosti akcí na úrovni specifické robotické platformy a definovaného prostředí, včetně omezení. V rámci této práce byla provedena recenze mnoha metod určených pro plánování cest, přičemž hlavním těžištěm byly metody založené na tzv. rychle rostoucích stromech (RRT), prostorovém rozkladu (CD) a využití fuzzy expertních systémů (FES). Dosažené výsledky, resp. prezentované algoritmy, využívají dostupné informace z pracovního prostoru mobilního robotu a jsou aplikovatelné na řešení globální pohybové trajektorie mobilních robotů, resp. k řešení specifických problémů plánování cest s omezením typu úzké koridory či překážky s proměnnou polohou v čase. V práci jsou představeny nové plánovací postupy využívající výhod algoritmů RRT a CD. Navržené metody jsou navíc efektivně rozšířeny s využitím fuzzy expertního systému, který zlepšuje jejich chování. Práce rovněž prezentuje řešení pro plánovací problémy typu identifikace úzkých koridorů, či významných oblastí prostoru řešení s využitím přístupů na bázi dekompozice prostoru. V řešeních jsou částečně zahrnuty sub-optimalizace nalezených cest založené na zkracování nalezené cesty a vyhlazování cesty, resp. nahrazení trajektorie hladkou křivkou, respektující lépe předpokládanou dynamiku mobilního zařízení. Všechny prezentované metody byly implementovány v prostředí Matlab, které sloužilo k simulačnímu ověření efektivnosti vlastních i převzatých metod a k návrhu prostoru řešení včetně omezení (překážky). Získané výsledky byly vyhodnoceny s využitím statistických přístupů v prostředí Minitab a Matlab.
|
360 |
Plánování pohybu objektu v 3D prostoru / Path Planning in 3D SpaceNěmec, František January 2016 (has links)
This paper deals with the problem of object path planning in 3D space. The goal is to create program which allows users to create a scene used for path planning, perform the planning and finally visualize path in the scene. Work is focused on probabilistic algorithms that are described in the theoretical part. The practical part describes the design and implementation of application. Finally, several experiments are performed to compare the performance of different algorithms and demonstrate the functionality of the program.
|
Page generated in 0.082 seconds