• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 8
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 70
  • 70
  • 63
  • 21
  • 14
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Functional organization of cutaneous reflex pathways during locomotion and reorganization following peripheral nerve and/or spinal cord lesions

Frigon, Alain January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
52

Instability Studies In Amorphous Silicon Based Alloys

Ozdemir, Orhan 01 January 2004 (has links) (PDF)
The pixel element which is an integrated combination of a p-i-n diode with a thin film transistor (TFT) is used to produce image sensor arrays in scanning and displays technologies, necessitating the deposition of hydrogenated silicon based semiconducting and insulating thin films such as a-Si:H, a-SiNx:H over large area. The widely used techniques to achieve this goal is the plasma enhanced chemical vapor deposition (PECVD) due to its large area and low temperature (&amp / #61603 / 300 &amp / #61616 / C) abilities. In particular, PECVD has proved to be able to deposit both high quality insulator (a-SiNx:H) and active layer of p-i-n diode (intrinsic hydrogenated amorphous silicon carbide, a-SiCx:H) and by sequential deposition, it is possible to minimize the interface related problems, which play an important role in metal insulator semiconductor (MIS) and TFT structures. PECVD deposited a-SiCx:H films over p-type crystal Si and metal substrates (MIS and MIM) were investigated by both admittance spectroscopy (Capacitance or conductance vs. voltage, temperature or frequency measurements) and Deep Level Transient spectroscopy (DLTS) to investigate the interface related problems. In this respect, instability phenomena (due to the creation of metastable states and charge injection into the gate electrode) were studied via the c-Si/a-SiCx:H (and/or a-SiNx:H) heterojunction. Specially, capacitance voltage kinetics were worked out and then the enrolled trap energies were identified with temperature mode DLTS. The expertise gathered as a result of these studies were used in the fabrication and characterization of TFT&amp / #65533 / s. In this respect, inverted gate staggered type Thin Film Transistor produced and characterized for the first time after Combo-251 Pattern Generator was implemented.
53

Implication des neurones TJ-positifs dans le comportement locomoteur de la larve de Drosophile / TJ-positive neurons implication in Drosophila larva locomotor behaviour

Babski, Hélène 01 October 2018 (has links)
Les CPGs (Central Pattern Generators) sont des circuits neuronaux capables de générer de façon autonome des comportements rythmiques essentiels à la vie tels que la respiration ou la locomotion. Chez la larve de Drosophile, le CPG locomoteur est composé de motoneurones (MNs) et d’une grande diversité d’interneurones (INs). Combien d’entre eux sont nécessaires pour former une CPG fonctionnel et comment ils interagissent reste un mystère. Au cours de mon doctorat, j’ai étudié une population neuronale restreinte caractérisée par son expression du facteur de transcription (FT) de la famille des Maf, Traffic Jam (TJ). En utilisant une technique d’intersection génétique et grâce à une lignée TJ-Flp générée au cours de mon doctorat, j’ai démontré pour la première fois que différentes sous-populations de neurones TJ+ ont des fonctions distinctes dans le comportement locomoteur de la larve de Drosophile. Au travers de cette sous-division fonctionnelle, j’ai finalement identifié 3 neurones TJ+ per+ GABAergic par segment qui régulent la vitesse de locomotion des larves. Une caractérisation moléculaire poussée de ces cellules a permis de confirmer qu’elles appartiennent au groupe connu des « midline cells », et plus particulièrement des mnb progeny, dont la fonction était jusqu’à maintenant inconnue. Par ailleurs, le code combinatoire de FTs trouvé chez ces mnb progeny rappelle celui exprimé par les V2b, une population d’interneurones qui régulerait également la vitesse de locomotion chez les vertébrés. Ces similarités entre mnb progeny et V2b laissent à penser que cette population de neurones pourrait être conservée au cours de l’évolution. En outre, des résultats préliminaires suggèrent que les interneurones TJ+ ont également un rôle chez la mouche adulte. / CPGs (Central Pattern Generators) are neural networks able to autonomously generate essential rhythmic behaviours such as walking or breathing. In Drosophila larvae, the locomotor CPG is made up of motoneurons (MNs) and a huge variety of interneurons (INs). How many are actually necessary to constitute a functional CPG and how they interact is not known. During the course of this PhD, I studied a discrete neuronal population singled out by its expression of the Maf transcription factor (TF) Traffic Jam (TJ). Thanks to an intersectional genetics approach and a TJ-Flp line generated during my PhD, I showed for the first time that TJ+ neurons subpopulations have distinct functions in Drosophila larva locomotion. Functional subdivision of TJ+ population eventually led to the identification of 3 TJ+ per+ GABAergic neurons that regulate the speed of locomotion. Thorough molecular characterization of this population permitted to identify them as mnb progeny neurons, a well studied subgroup of midline cells whose function had never been described before. The TF combinatorial code expressed by these cells is highly reminiscent of the one found in V2b INs, a population in vertebrates thought to regulate the speed of locomotion as well in vertebrates; this opens the possibility of a functional conservation across evolution. Preliminary results furthermore suggest that TJ+ INs would have functional roles in the adult fly.
54

Caractérisation spatiale des syncytia formés par le couplage des astrocytes du noyau sensoriel principal du nerf trijumeau en fonction de la concentration de calcium extracellulaire

Lavoie, Raphaël 01 1900 (has links)
No description available.
55

Numerická klávesnice / Numeric keyboard

Hladký, Pavel January 2020 (has links)
This thesis deals with design of numeric keyboard, which can be connected to personal computer or laptop through USB interface. This numeric keyboard can be also configured using application for operating system Windows. Backlight pattern generator is also part of this application. Theoretic part deals with various types of keyboards, switches and closer description of USB interface. Practical part deals with sole design of circuit that detects keystrokes and sends information about active switches through USB, description of used components, description of microcontroller service routine and description of the application for backlight pattern generating. At the end of this thesis are described results of measurements which were made to choose mechanical switches with shortest debounce time and keyboard response to key press.
56

Simulační modelování a řízení hadům podobných robotů / Simulační modelování a řízení hadům podobných robotů

Motyčková, Paulína January 2021 (has links)
This paper deals with the design of a robotic snake, its assembly, simulation using CoppeliaSim, and the testing of various methods for the control of robotic snakes (Serpentinoid, CPG). For individual control methods, the influence of selected parameters on the signals controlling the motorized joints of the robotic snake is observed, and their influence on the speed and energy consumption of the given mechanism is described.
57

Intrinsic Properties and Ion Channels Contributing to Dual Frequency Oscillations

Snyder, Ryan Richard 22 April 2022 (has links)
No description available.
58

Infinitesimal Phase Response Curves for Piecewise Smooth Dynamical Systems

Park, Youngmin 23 August 2013 (has links)
No description available.
59

Enregistrement de l’activité des interneurones prémoteurs de la région péritrigéminale en réponse à l’activité rythmique des neurones du noyau sensoriel principal du trijumeau

Sanvi, Ohini Yanis 05 1900 (has links)
La mastication est une fonction essentielle relevant de la coordination d’un ensemble d’acteurs que sont la mâchoire, la langue et les muscles faciaux. La synchronisation de l’activité des différentes parties relève d’un réseau spécialisé de neurones nommé générateur de patron central (GPC) dont il a été proposé que le coeur rythmogène soit formé des neurones de la partie dorsale du noyau sensoriel principal du trijumeau (NVsnpr). Ces neurones ont la capacité intrinsèque de pouvoir alterner leur patron de décharge entre un mode tonique et rythmique en fonction la concentration extracellulaire de calcium ([Ca2+]e). Autrefois relégués à un rôle passif dans le système nerveux central, les évidences se sont accumulées en faveur d’un rôle actif des astrocytes dans les fonctions physiologiques. À cet effet, dans le NVsnpr, la stimulation des afférences sensorielles trigéminales active les astrocytes qui participent à la genèse du rythme masticateur en libérant la S100β, une protéine chélatrice du Ca2+ extracellulaire. Récemment, il a été démontré que l’activation rythmique des neurones du NVsnpr dorsal menait à une activation rythmique des motoneurones (MNs) innervant les muscles masticateurs. Ceci impliquerait qu’une seule population de neurone au sein du NVsnpr dorsal active de manière concomitante des MNs innervant les muscles antagonistes de la mâchoire. On suppose alors l’activation de la région péritrigéminale (PeriV), un réseau d’interneurones prémoteurs (INs) ceinturant les MNs du trijumeau et adjacente au NVsnpr. Son activation modulerait l’activité des MNs de muscles antagonistes. Les présents travaux réalisés en imagerie calcique indiquent que l’activation du NVsnpr par une baisse de la [Ca2+]e, simulant l’action de la S100β ou la stimulation électrique des afférences sensorielles trigéminales activent les neurones et astrocytes de la partie dorsale du NVsnpr et subséquemment les INs de la PeriV. Les patrons d’activité calcique des INs de la PeriV étaient similaires à ceux observés au sein du NVsnpr. Ces observations supportent par la même occasion la transmission des patrons en provenance du NVsnpr, le générateur du rythme masticateur vers la région prémotrice PeriV. Par ailleurs, les astrocytes péritrigéminaux dont le rôle n’avait jamais été investigué ont également répondu aux activations du NVsnpr dans des patrons d’activité calcique similaires aux astrocytes du NVsnpr dorsal. Ensemble, ces résultats suggèrent l’implication de la région PeriV dans la transmission et la modulation du rythme dans le GPC masticateur. / Mastication is an essential function that involves coordination of the jaw, tongue and facial muscles. Synchronization of the activity of these different parts is assured by a specialized network of neurons known as central pattern generator (CPG), whose rhythmogenic core has been proposed to be formed by neurons in the dorsal part of the trigeminal principal sensory nucleus (NVsnpr). These neurons have the intrinsic ability to alternate their firing pattern between a tonic and rhythmic mode, depending on the extracellular calcium concentration ([Ca2+]e). Once relegated to a passive role in the central nervous system, evidence is accumulating in favor of an active role for astrocytes in physiological functions. In NVsnpr, trigeminal sensory afferents stimulation activates astrocytes, which participate in the genesis of the masticatory rhythm by releasing S100β a calcium-binding protein that lowers [Ca2+]e. Recently, it has been demonstrated that rhythmic activation of dorsal NVsnpr neurons leads to rhythmic activation of motoneurons (MNs) innervating masticatory muscles. This would imply that a single neuron population within the dorsal NVsnpr concomitantly activates MNs innervating antagonistic jaw muscles. We presume that activation of the peritrigeminal region (PeriV), a network of premotor interneurons (INs) surrounding the trigeminal MNs and adjacent to the NVsnpr could modulate the activity of antagonistic muscle MNs. The present calcium imaging work indicates that activation of the NVsnpr by a decrease in [Ca2+]e, simulating the action of S100β, or electrical stimulation of trigeminal sensory afferents activates neurons and astrocytes in the dorsal part of NVsnpr and subsequently the INs of the PeriV. Calcium activity patterns in PeriV INs were similar to those observed in NVsnpr, supporting the transmission of patterns from NVsnpr, the generator of masticatory rhythm, to the PeriV premotor region. In addition, previously uninvestigated peritrigeminal astrocytes also responded to NVsnpr activations with calcium activity patterns similar to those of dorsal NVsnpr astrocytes. Taken together, these results suggest the involvement of the PeriV region in rhythm transmission and modulation in the masticatory CPG.
60

Development and plasticity of locomotor circuits in the zebrafish spinal cord

Knogler, Laura Danielle 11 1900 (has links)
A fundamental goal in neurobiology is to understand the development and organization of neural circuits that drive behavior. In the embryonic spinal cord, the first motor activity is a slow coiling of the trunk that is sensory-independent and therefore appears to be centrally driven. Embryos later become responsive to sensory stimuli and eventually locomote, behaviors that are shaped by the integration of central patterns and sensory feedback. In this thesis I used a simple vertebrate model, the zebrafish, to investigate in three manners how developing spinal networks control these earliest locomotor behaviors. For the first part of this thesis, I characterized the rapid transition of the spinal cord from a purely electrical circuit to a hybrid network that relies on both chemical and electrical synapses. Using genetics, lesions and pharmacology we identified a transient embryonic behavior preceding swimming, termed double coiling. I used electrophysiology to reveal that spinal motoneurons had glutamate-dependent activity patterns that correlated with double coiling as did a population of descending ipsilateral glutamatergic interneurons that also innervated motoneurons at this time. This work (Knogler et al., Journal of Neuroscience, 2014) suggests that double coiling is a discrete step in the transition of the motor network from an electrically coupled circuit that can only produce simple coils to a spinal network driven by descending chemical neurotransmission that can generate more complex behaviors. In the second part of my thesis, I studied how spinal networks filter sensory information during self-generated movement. In the zebrafish embryo, mechanosensitive sensory neurons fire in response to light touch and excite downstream commissural glutamatergic interneurons to produce a flexion response, but spontaneous coiling does not trigger this reflex. I performed electrophysiological recordings to show that these interneurons received glycinergic inputs during spontaneous fictive coiling that prevented them from firing action potentials. Glycinergic inhibition specifically of these interneurons and not other spinal neurons was due to the expression of a unique glycine receptor subtype that enhanced the inhibitory current. This work (Knogler & Drapeau, Frontiers in Neural Circuits, 2014) suggests that glycinergic signaling onto sensory interneurons acts as a corollary discharge signal for reflex inhibition during movement. v In the final part of my thesis I describe work begun during my masters and completed during my doctoral degree studying how homeostatic plasticity is expressed in vivo at central synapses following chronic changes in network activity. I performed whole-cell recordings from spinal motoneurons to show that excitatory synaptic strength scaled up in response to decreased network activity, in accordance with previous in vitro studies. At the network level, I showed that homeostatic plasticity mechanisms were not necessary to maintain the timing of spinal circuits driving behavior, which appeared to be hardwired in the developing zebrafish. This study (Knogler et al., Journal of Neuroscience, 2010) provided for the first time important in vivo results showing that synaptic patterning is less plastic than synaptic strength during development in the intact animal. In conclusion, the findings presented in this thesis contribute widely to our understanding of the neural circuits underlying simple motor behaviors in the vertebrate spinal cord. / Un objectif important en neurobiologie est de comprendre le développement et l'organisation des circuits neuronaux qui entrainent les comportements. Chez l'embryon, la première activité motrice est une lente contraction spontanée qui est entrainée par l'activité intrinsèque des circuits spinaux. Ensuite, les embryons deviennent sensibles aux stimulations sensorielles et ils peuvent éventuellement nager, comportements qui sont façonnées par l'intégration de l'activité intrinsèque et le rétrocontrôle sensoriel. Pour cette thèse, j'ai utilisé un modèle vertébré simple, le poisson zèbre, afin d'étudier en trois temps comment les réseaux spinaux se développent et contrôlent les comportements locomoteurs embryonnaires. Pour la première partie de cette thèse j'ai caractérisé la transition rapide de la moelle épinière d'un circuit entièrement électrique à un réseau hybride qui utilise à la fois des synapses chimiques et électriques. Nos expériences ont révélé un comportement embryonnaire transitoire qui précède la natation et qu'on appelle « double coiling ». J'ai démontré que les motoneurones spinaux présentaient une activité dépendante du glutamate corrélée avec le « double coiling » comme l'a fait une population d'interneurones glutamatergiques ipsilatéraux qui innervent les motoneurones à cet âge. Ce travail (Knogler et al., Journal of Neuroscience, 2014) suggère que le « double coiling » est une étape distincte dans la transition du réseau moteur à partir d'un circuit électrique très simple à un réseau spinal entrainé par la neurotransmission chimique pour générer des comportements plus complexes. Pour la seconde partie de ma thèse, j'ai étudié comment les réseaux spinaux filtrent l'information sensorielle de mouvements auto-générés. Chez l'embryon, les neurones sensoriels mécanosensibles sont activés par un léger toucher et ils excitent en aval des interneurones sensoriels pour produire une réponse de flexion. Par contre, les contractions spontanées ne déclenchent pas ce réflexe même si les neurones sensoriels sont toujours activés. J'ai démontré que les interneurones sensoriels reçoivent des entrées glycinergiques pendant les contractions spontanées fictives qui les empêchaient de générer des potentiels d'action. L'inhibition glycinergique de ces interneurones, mais pas des autres neurones spinaux, est due à l'expression d'un sous-type de récepteur glycinergique unique qui augmente iii le courant inhibiteur. Ce travail (Knogler & Drapeau, Frontiers in Neural Circuits, 2014) suggère que la signalisation glycinergique chez les interneurones sensoriels agit comme un signal de décharge corolaire pour l'inhibition des réflexes pendant les mouvements auto- générés. Dans la dernière partie de ma thèse, je décris le travail commencé à la maîtrise et terminé au doctorat qui montre comment la plasticité homéostatique est exprimée in vivo aux synapses centrales à la suite des changements chroniques de l'activité du réseau. J'ai démontré que l'efficacité synaptique excitatrice de neurones moteurs spinaux est augmentée à la suite d’une diminution de l'activité du réseau, en accord avec des études in vitro précédentes. Par contre, au niveau du réseau j'ai démontré que la plasticité homéostatique n'était pas nécessaire pour maintenir la rythmicité des circuits spinaux qui entrainent les comportements embryonnaires. Cette étude (Knogler et al., Journal of Neuroscience, 2010) a révélé pour la première fois que l'organisation du circuit est moins plastique que l'efficacité synaptique au cours du développement chez l'embryon. En conclusion, les résultats présentés dans cette thèse contribuent à notre compréhension des circuits neuronaux de la moelle épinière qui sous-tendent les comportements moteurs simples de l'embryon.

Page generated in 0.0982 seconds