• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 21
  • 21
  • 17
  • 15
  • 15
  • 7
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 196
  • 44
  • 30
  • 29
  • 26
  • 26
  • 26
  • 23
  • 21
  • 19
  • 17
  • 16
  • 15
  • 15
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Formularmanagement

Riedel, Wolfgang 02 July 2003 (has links)
Workshop Mensch-Computer-Vernetzung Gestaltung von Formulartechniken: Webschnittstelle mittels HTML-Formular, interne Generierung einer PDF-Ausgabe, dabei evtl. Verwendung existierender PDF-Formulare
102

Formularmanagement

Riedel, Wolfgang 22 August 2003 (has links)
Der Artikel stellt dar, wie Formulare für Beantragungs- und Verwaltungszwecke in elektronischer Form nutzerfreundlich gestaltet und angeboten werden können.
103

High Fidelity Numerical Simulations and Diagnostics of Complex Reactive Systems

Song, Wonsik 03 1900 (has links)
To contribute to the design of next-generation high performance and low emission combustion devices, this study provides a series of high fidelity numerical simulations of turbulent premixed combustion and autoignition with different clean fuels. The first part of the thesis consists of the direct numerical simulations (DNS) of the lean hydrogen-air turbulent premixed flames at a wide range of Karlovitz number (Ka) conditions up to Ka = 1,126. Turbulence-chemistry interaction is discussed in terms of statistical analysis of the turbulent flame speed and flame structure. Global and local flame speed are separately studied through the fuel consumption speed and displacement speed of the flame front, respectively, and the results are compared with the reference laminar flames as well as similar studies in the literature. The global flame structure is assessed via cross-sectional and conditional averages, and modeling implication is further discussed. Detailed analysis of the local flame structure along the positive and negative curvature is also conducted, providing an understanding of the different behavior of local heat release response. Finally, as the modeling perspectives for Reynolds-averaged Navier-Stokes (RANS) and large eddy simulations (LES), the mean quantities of major species, intermediate species, density, the reaction rate of the progress variable, and heat release rate are assessed in the context of the probability density function (PDF). The second part of the thesis consists of applications of the advanced mathematical tool called the computational singular perturbation (CSP). A skeletal chemical mechanism is developed using the CSP algorithm for the autoignition of methanol and dimethyl ether blends, and the ignition delay time and laminar flame speed are validated for a wide range of mixture conditions. A series of autoignition simulations are carried out in the canonical counter flow mixing layer using the developed skeletal mechanism, and detailed analyses of the autoignition for the methanol and dimethyl ether blends at a wide range of strain rate conditions are provided using the CSP diagnostics tools for a wide range of chemical and fluid combinations.
104

Publikation von Partituren im Internet: Fassung Dezember 2017

Drude, Matthias 01 February 2018 (has links)
'Bedienungsanleitung' für die Veröffentlichung von Kompositionen auf www.qucosa.de und für das Erzeugen von pdf/A-Dateien für die Langfristarchivierung Überarbeitete und aktualisierte Fassung des Artikels 'Publikation von Partituren im Internet' aus 'INFORMATIONEN des Deutschen Komponistenverbands' (1/2009)
105

Ain't Nothin' But a PDA: Measuring the Effectiveness of PDAs in Rural Practice

Wallace, Rick L., Woodward, Nakia J. 30 October 2009 (has links)
No description available.
106

Fade Statistics For A Lasercom System And The Joint Pdf Of A Gamma-gamma Distributed Irradiance And Its Time Derivative

Stromqvist Vetelino, Frida 01 January 2006 (has links)
The performance of lasercom systems operating in the atmosphere is reduced by optical turbulence, which causes irradiance fluctuations in the received signal. The result is a randomly fading signal. Fade statistics for lasercom systems are determined from the probability density function (PDF) of the irradiance fluctuations. The expected number of fades per second and their mean fade time require the joint PDF of the fluctuating irradiance and its time derivative. Theoretical integral expressions, as well as closed form, analytical approximations, were developed for the joint PDF of a gamma-gamma distributed irradiance and its time derivative, and the corresponding expression for the expected number of fades per second. The new approximation for the conditional PDF of the time derivative of a gamma-gamma irradiance is a zero mean Gaussian distribution, with a complicated irradiance depending variance. Fade statistics obtained from experimental data were compared to theoretical predictions based on the lognormal and gamma-gamma distributions. A Gaussian beam wave was propagated through the atmosphere along a horizontal path, near ground, in the moderate-to-strong optical turbulence. To characterize the propagation path, a new method that infers atmospheric propagation parameters was developed. Scintillation theory combined with a numerical scheme was used to infer the structure constant, Cn2, the inner scale and the outer scale from the optical measurements. The inferred parameters were used in calculations for the theoretical PDFs. It was found that fade predictions made by the gamma-gamma and lognormal distributions provide an upper and lower bound, respectively, for the probability of fade and the number of fades per second for irradiance data collected in the moderate-to-strong fluctuation regime. Aperture averaging effects on the PDF of the irradiance fluctuations were investigated by comparing the irradiance distributions for the three receiver apertures at two different values of the structure parameter and, hence, different values of the coherence radius. For the moderate-to-strong fluctuation regime, the gamma-gamma distribution provides a good fit to the irradiance fluctuations collected by finite-sized apertures that are significantly smaller than the coherence radius. For apertures larger than or equal to the coherence radius, the irradiance fluctuations appear to be lognormally distributed.
107

Impact Of Hurricanes On Structures - A Performance Based Engineering View

Mishra, Vijay 01 January 2010 (has links)
The magnitude of damage caused to the United States (US) coast due to hurricanes has increased significantly in the last decade. During the period 2004-2005, the US experienced seven of the costliest hurricanes in the country's history (NWS TPC-5, 2007) leading to an estimated loss of ~ $158 billion. The present method for predicting hurricane losses, HAZUS (HAZard US), is solely based on hurricane hazard and damage caused to building envelopes only and not to structural systems (Vickery et al., 2006). This method does not take into account an intermediate step that allows for better damage estimates, which is structural response to the hazards that in turn can be mapped to the damage. The focus of this study was to quantify the uncertainty in response of structures to the hurricane hazards associated with hurricanes from performance based engineering perspective. The study enumerates hazards associated with hurricanes events. The hazards considered can be quantified using a variety of measures, such as wind speed intensities, wave and surge heights. These hazards are quantified in terms of structural loads and are then applied to a structural system. Following that, structural analysis was performed to estimate the response from the structural system for given loads. All the possible responses are measured and they are fitted with suitable probability distribution to estimate the probability of a response. The response measured then can be used to understand the performance of a given structure under the various hurricane loads. Dynamic vs. static analysis was performed and results were compared. This will answer a few questions like, if there is any need to do both static and dynamic analysis and how hurricane loads affect the structural material models. This being an exploratory study, available resources, research, and models were used. For generation of annual or extreme values of hazard, various available wind speed, storm surge, and wave height models were studied and evaluated. The wind field model by Batts et al. (1980) was selected for generation of annual wind speed data. For calculation of maximum storm surge height, the Sea, Lake Overland Surges from Hurricane (SLOSH, Jelesnianski et al., 1992) program was used. Wave data was acquired from a National Oceanic and Atmospheric Administration (NOAA) database. The (extreme or annual) wind speed, surge height, and wave height generated were then fitted by suitable probability distributions to find the realizations of hazards and their probabilities. The distribution properties were calculated, correlations between the data were established, and a joint probability distribution function (PDF) of the parameters (wind speed, wave height, and storm surge) was generated. Once the joint distribution of extreme loads was established, the next step was to measure the dynamic response of the structural system to these hazards. To measure the structural response, a finite element model of three-story concrete frame were constructed. Time histories of wind load were generated from wind net pressure coefficients recorded in a wind tunnel test (Main and Fritz, 2006). Wave load time histories were generated using laboratory basin test (Hawke's et al., 1993) wave height time history data and were converted into wave loads using Bernoulli's equation. Surge height was treated as a hydrostatic load in this analysis. These load time histories were then applied to the finite element model and response was measured. Response of the structural system was measured in terms of the mean and maximum displacements recorded at specific nodes of model. Response was calculated for loads having constant mean wind speed and surge/wave and different time histories. The dominant frequency in the wind load time histories was closer to the natural frequency of the structural model used than the dominant frequency in the wave height time histories. Trends in the response for various combinations of mean wind speed, wave height, and surge heights were analyzed. It was observed that responses are amplified with increase in the mean wind speed. Less response was measured for change in mean surge/wave height as the tributary area for wave forces was less compared to wind force. No increase in dynamic amplification factor was observed for increase in force time histories case.
108

Constraints on the Short-Range Structure of Amorphous Calcium Phosphate: A Precursor in the Formation of Hydroxylapatite

Hoeher, Alexandria J. 05 August 2015 (has links)
No description available.
109

REPRESENTATION OF DIFFERENTIAL MOLECULAR DIFFUSION BY USING LAMINAR FLAMELET AND MODELING OF POOL FIRE BY USING TRANSPORTED PDF METHOD

Tianfang Xie (13171122) 28 July 2022 (has links)
<p><br></p> <p>A  combustion simulation involves various physiochemical processes, such as molecular and turbulent diffusion, smoke and soot formation, thermal radiation, chemical reaction mechanisms, and kinetics. In the last decade, computational fluid dynamics (CFD) has been increasingly used in combustion modeling. It is critically important to improve and enhance the predictive capabilities of combustion models. This work presents an analysis of two types of diffusion flames: the momentum-dominant jet flames and buoyancy-controlled pool fires. The gap between the existing knowledge of differential molecular diffusion in turbulent high momentum jet flow and the practical applications has been reduced. The importance of mixing modeling in pool fire simulations has been revealed, and enhancement for predicting fire extinction limits has been proposed.</p> <p><br></p> <p>Modeling differential molecular diffusion in turbulent non-premixed combustion remains a great challenge for flamelet models. The laminar flamelet is a key component of a flamelet model for turbulent combustion. One significant challenge that has not been well addressed is the representativity of laminar flamelet for the characteristics of differential molecular diffusion in turbulent combustion problems. Laminar flamelet is generated typically based on two conceptual burner configurations, the opposed jet burner, and the Tsuji burner. They are commonly considered equivalent when dealing with the description of laminar flamelet structures. A difference between them is revealed in this work for the first time when they are used to represent differential molecular diffusion. The traditionally opposed jet burner yields an almost fixed equal diffusion location in the mixture fraction space for the transport of different elements. The Tsuji burner can produce a continuous variation of the equal diffusion location in the mixture fraction space with a slight extension. This variation of the equal diffusion location is shown to be an essential characteristic of turbulent non-premixed combustion, as demonstrated in a laminar jet mixing layer problem, a turbulent jet mixing layer problem, and a turbulent jet non-premixed flame. The Tsuji burner is thus potentially a more suitable choice than the opposed jet burner for laminar flamelet generation that can be consequently used in flamelet modeling of differential molecular diffusion for turbulent non-premixed combustion.</p> <p><br></p> <p>Capturing fire extinction limits in simulations is essential for developing predictive capabilities for fire. In this work, the combined large-eddy simulation (LES) and transported probability density function (PDF) methods are assessed for the predictions of fire extinction. The University of Maryland line burner is adopted as a validation test case. The NIST Fire Dynamics Simulator (FDS) code for LES is combined with an in-house PDF code called HPDF for the fire simulations. The simulation results were verified by using the available experimental data. The combustion efficiency under the different oxygen depletion levels in the oxidizer is analyzed. Fire extinction occurs when the oxygen depletion level reduces to a certain level. The model’s capability to capture this extinction limit is assessed by using the experimental data. Different mixing models and model parameters are examined. It is found that the fire extinction limit is very sensitive to the different mixing models and mixing parameters. The level of sensitivity is higher than in momentum-driven turbulent flames, which suggests the importance of mixing modeling in fire simulations. The existing mixing models need further enhancement for predicting fire extinction. </p> <p><br></p>
110

Evaluation of zero-dimensional stochastic reactor modelling for a diesel engine application

Korsunovs, Aleksandrs, Campean, Felician, Pant, G., Garcia-Afonso, O., Tunc, E. 29 April 2019 (has links)
Yes / Prediction of engine-out emissions with high fidelity from in-cylinder combustion simulations is still a significant challenge early in the engine development process. This paper contributes to this fast evolving body of knowledge by focusing on the evaluation of NOx emissions predictions capability of a Probability Density Function (PDF) based Stochastic Reactor Engine Models (SRM), for a Diesel engine. The research implements a systematic approach to the study of the SRM engine model performance, based on a detailed space-filling design of experiments based sensitivity analysis of both external and internal parameters, evaluating their effects on the accuracy in matching physical measurements of in-cylinder conditions, and NOx emissions output. The approach proposed in this paper introduces an automatic SRM model calibration methodology across the engine operating envelope, based on a multi-objective optimization approach. This aims to exploit opportunities for internal SRM parameters tuning to achieve good overall modelling performance as a trade-off between physical in-cylinder measurements accuracy and the output NOx emissions predictions error. The results from the case study provide a valuable insight into the effectiveness of the SRM model, showing good capability for NOx emissions prediction and trends, while pointing out the critical sensitivity to the external input parameters and modelling conditions. / 41043/R00836 Jaguar Land Rover funded research “MULTI-PHYSICS ENGINE SIMULATION FRAMEWORK: RESEARCH INTO ADVANCED CAE CAPABILITY FOR MULTI-PHYSICS SIMULATION FRAMEWORK TO GENERATE HIGH FIDELITY PREDICTION OF ENGINE-OUT EMISSIONS”, 2016 – 2019. / Research Development Fund Publication Prize Award winner, March 2019.

Page generated in 0.0871 seconds