Spelling suggestions: "subject:"pedal"" "subject:"medal""
31 |
Design and construction of a high-speed human-powered boatMosley, Kim Arthur January 1982 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING / Bibliography: leaf 51. / by Kim Arthur Mosley. / M.S.
|
32 |
Driver Modeling Based on Driving Behavior and Its Evaluation in Driver IdentificationMiyajima, Chiyomi, Nishiwaki, Yoshihiro, Ozawa, Koji, Wakita, Toshihiro, Itou, Katsunobu, Takeda, Kazuya, Itakura, Fumitada January 2007 (has links)
No description available.
|
33 |
Atividade eletromiográfica e força muscular de membros inferiores durante o ciclismo até a exaustão em atletas competitivosDiefenthaeler, Fernando January 2009 (has links)
A fadiga muscular pode ser definida como a incapacidade de manutenção de um nível esperado de força para uma dada intensidade, o que envolve um processo complexo reunindo fatores fisiológicos, biomecânicos e psicológicos. O objetivo deste trabalho foi investigar o efeito da fadiga sobre variáveis biomecânicas no ciclismo. Para isso, dois estudos foram delineados. No primeiro estudo, o objetivo foi analisar a cadência, forças no pedal e a atividade elétrica dos músculos do membro inferior durante teste de ciclismo até a exaustão. Quatorze triatletas completaram um teste incremental máximo e no dia seguinte pedalaram a uma carga correspondente a 100% do consumo máximo de oxigênio até a exaustão. Os dados de cadência, forças no pedal e eletromiografia (EMG) dos músculos glúteo máximo (GL), reto femoral (RF), vasto lateral (VL), vasto medial (VM), bíceps femoral (BF), gastrocnêmio medial (GM), tibial anterior (TA) e sóleo (SO) foram coletados e analisados a cada 10s durante o início, meio e fim do teste de fadiga. O valor root mean square (RMS) foi usado com representativo da ativação muscular total. As forças normal e tangencial aumentaram significativamente do início para o fim do teste, enquanto a cadência diminuiu significativamente. Os valores RMS do GL, VL, RF e VM aumentaram significativamente do início para o fim do teste. No entanto, a ativação não se alterou significativamente para os músculos BF, GM, TA e SO. A fadiga durante um teste até a exaustão gerou aumento na ativação do GL e extensores do joelho, na força normal e redução na cadência. A manutenção da carga de trabalho pareceu estar relacionada com maior participação do GL e VL. No segundo estudo o objetivo foi analisar os efeitos da fadiga na técnica de pedalada. Oito ciclistas de elite completaram um teste incremental máximo e no dia seguinte pedalaram em um ciclo ergômetro a carga correspondente a 100% do consumo máximo de oxigênio até a exaustão. Durante este teste, pedais instrumentados foram utilizados para avaliar a técnica de pedalada. Avaliação cinemática foi realizada para monitorar o comportamento angular do tornozelo e o ângulo do pedal. Considerando o membro inferior direito, a força resultante e a força efetiva foram calculadas para a determinação do índice de efetividade (IE). Ao longo do teste de fadiga, o IE não apresentou alterações significativas. O tornozelo apresentou aumento significativo na amplitude de movimento ao longo do teste, sendo o mesmo observado para o ângulo do pedal. Esses resultados sugeriram que a fadiga muscular levou a alteração na técnica de pedalada. As mudanças no comportamento angular do tornozelo parecem suportar a manutenção do IE durante a pedalada, mesmo quando músculos produtores de potência apresentam fadiga, conforme descrito no primeiro estudo. Tomados em conjunto, os resultados destes dois estudos sugerem que atletas apresentam mudanças na técnica de pedalada devido à fadiga, mas conseguem ajustar os padrões de ativação muscular e cinemática do membro inferior a fim de prolongar o tempo de exaustão. / Muscle fatigue can be defined as an inability to sustain a determined level of force under a given intensity, which involves physiological, biomechanical and psychological factors. The purpose of this thesis was to investigate the effects of fatigue on biomechanical aspects of cycling. Two studies were designed to evaluate fatigue up to exhaustion. For the first study, the aims were to evaluate cadence, pedal forces and electrical activity of lower limbs muscles during a cycling trial until exhaustion. Fourteen triathletes completed an incremental maximal cycling test and in the following day pedaled up to exhaustion under a workload eliciting 100% of the maximal oxygen uptake. Data of cadence, pedal forces and electromyography (EMG) from gluteus maximus (GL), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), gastrocnemius medialis (GM), tibialis anterior (TA) and soleous (SO) muscles were acquired during 10 s for the start, middle and end of the fatigue trial. The root mean square (RMS) value was used as an indicator of total muscle activation. Normal and tangential forces increased significantly from the start to the end of the test, whereas cadence statistically significantly decreased. The RMS value of GL, VL, RF and VL significantly increased from the start to the end of the test. Nevertheless, activation did not statistically change for BF, GM, TA and SO. The fatigue during cycling leaded to increases in GL and knee extensors activation, as well as in normal pedal force and to a decrease in cadence. The maintenance of the target workload appears to be related to higher participation of GL and VL. For the second study, the aim was to investigate the effects of fatigue on the pedaling technique. Eight elite cyclists completed an incremental maximal cycling test and completed a cycling test until exhaustion under workload eliciting 100% of the maximal oxygen uptake in the following day. During the test, instrumented pedals were used for evaluation of pedaling technique. Kinematic assessment was used to monitor the angular behavior of the ankle joint and of the pedal. The right lower limb resultant pedal force and effective force were computed for determination of the effectiveness index (IE). During the fatigue test, IE did not change significantly. The ankle kinematics revealed statistical increase for ankle and pedal ranges of motion with fatigue. These results suggest that muscle fatigue leads to changes in pedaling technique. The changes in ankle kinematics seems to support the IE maintenance during pedaling up to exhaustion, even so power producer muscles presented fatigue, as described in the first study. Data from both studies suggest that athletes change pedaling technique due to fatigue, but they are able to sustain patterns of muscle activation and kinematic in an attempt to prolong the time to exhaustion.
|
34 |
Atividade eletromiográfica e força muscular de membros inferiores durante o ciclismo até a exaustão em atletas competitivosDiefenthaeler, Fernando January 2009 (has links)
A fadiga muscular pode ser definida como a incapacidade de manutenção de um nível esperado de força para uma dada intensidade, o que envolve um processo complexo reunindo fatores fisiológicos, biomecânicos e psicológicos. O objetivo deste trabalho foi investigar o efeito da fadiga sobre variáveis biomecânicas no ciclismo. Para isso, dois estudos foram delineados. No primeiro estudo, o objetivo foi analisar a cadência, forças no pedal e a atividade elétrica dos músculos do membro inferior durante teste de ciclismo até a exaustão. Quatorze triatletas completaram um teste incremental máximo e no dia seguinte pedalaram a uma carga correspondente a 100% do consumo máximo de oxigênio até a exaustão. Os dados de cadência, forças no pedal e eletromiografia (EMG) dos músculos glúteo máximo (GL), reto femoral (RF), vasto lateral (VL), vasto medial (VM), bíceps femoral (BF), gastrocnêmio medial (GM), tibial anterior (TA) e sóleo (SO) foram coletados e analisados a cada 10s durante o início, meio e fim do teste de fadiga. O valor root mean square (RMS) foi usado com representativo da ativação muscular total. As forças normal e tangencial aumentaram significativamente do início para o fim do teste, enquanto a cadência diminuiu significativamente. Os valores RMS do GL, VL, RF e VM aumentaram significativamente do início para o fim do teste. No entanto, a ativação não se alterou significativamente para os músculos BF, GM, TA e SO. A fadiga durante um teste até a exaustão gerou aumento na ativação do GL e extensores do joelho, na força normal e redução na cadência. A manutenção da carga de trabalho pareceu estar relacionada com maior participação do GL e VL. No segundo estudo o objetivo foi analisar os efeitos da fadiga na técnica de pedalada. Oito ciclistas de elite completaram um teste incremental máximo e no dia seguinte pedalaram em um ciclo ergômetro a carga correspondente a 100% do consumo máximo de oxigênio até a exaustão. Durante este teste, pedais instrumentados foram utilizados para avaliar a técnica de pedalada. Avaliação cinemática foi realizada para monitorar o comportamento angular do tornozelo e o ângulo do pedal. Considerando o membro inferior direito, a força resultante e a força efetiva foram calculadas para a determinação do índice de efetividade (IE). Ao longo do teste de fadiga, o IE não apresentou alterações significativas. O tornozelo apresentou aumento significativo na amplitude de movimento ao longo do teste, sendo o mesmo observado para o ângulo do pedal. Esses resultados sugeriram que a fadiga muscular levou a alteração na técnica de pedalada. As mudanças no comportamento angular do tornozelo parecem suportar a manutenção do IE durante a pedalada, mesmo quando músculos produtores de potência apresentam fadiga, conforme descrito no primeiro estudo. Tomados em conjunto, os resultados destes dois estudos sugerem que atletas apresentam mudanças na técnica de pedalada devido à fadiga, mas conseguem ajustar os padrões de ativação muscular e cinemática do membro inferior a fim de prolongar o tempo de exaustão. / Muscle fatigue can be defined as an inability to sustain a determined level of force under a given intensity, which involves physiological, biomechanical and psychological factors. The purpose of this thesis was to investigate the effects of fatigue on biomechanical aspects of cycling. Two studies were designed to evaluate fatigue up to exhaustion. For the first study, the aims were to evaluate cadence, pedal forces and electrical activity of lower limbs muscles during a cycling trial until exhaustion. Fourteen triathletes completed an incremental maximal cycling test and in the following day pedaled up to exhaustion under a workload eliciting 100% of the maximal oxygen uptake. Data of cadence, pedal forces and electromyography (EMG) from gluteus maximus (GL), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), gastrocnemius medialis (GM), tibialis anterior (TA) and soleous (SO) muscles were acquired during 10 s for the start, middle and end of the fatigue trial. The root mean square (RMS) value was used as an indicator of total muscle activation. Normal and tangential forces increased significantly from the start to the end of the test, whereas cadence statistically significantly decreased. The RMS value of GL, VL, RF and VL significantly increased from the start to the end of the test. Nevertheless, activation did not statistically change for BF, GM, TA and SO. The fatigue during cycling leaded to increases in GL and knee extensors activation, as well as in normal pedal force and to a decrease in cadence. The maintenance of the target workload appears to be related to higher participation of GL and VL. For the second study, the aim was to investigate the effects of fatigue on the pedaling technique. Eight elite cyclists completed an incremental maximal cycling test and completed a cycling test until exhaustion under workload eliciting 100% of the maximal oxygen uptake in the following day. During the test, instrumented pedals were used for evaluation of pedaling technique. Kinematic assessment was used to monitor the angular behavior of the ankle joint and of the pedal. The right lower limb resultant pedal force and effective force were computed for determination of the effectiveness index (IE). During the fatigue test, IE did not change significantly. The ankle kinematics revealed statistical increase for ankle and pedal ranges of motion with fatigue. These results suggest that muscle fatigue leads to changes in pedaling technique. The changes in ankle kinematics seems to support the IE maintenance during pedaling up to exhaustion, even so power producer muscles presented fatigue, as described in the first study. Data from both studies suggest that athletes change pedaling technique due to fatigue, but they are able to sustain patterns of muscle activation and kinematic in an attempt to prolong the time to exhaustion.
|
35 |
Atividade eletromiográfica e força muscular de membros inferiores durante o ciclismo até a exaustão em atletas competitivosDiefenthaeler, Fernando January 2009 (has links)
A fadiga muscular pode ser definida como a incapacidade de manutenção de um nível esperado de força para uma dada intensidade, o que envolve um processo complexo reunindo fatores fisiológicos, biomecânicos e psicológicos. O objetivo deste trabalho foi investigar o efeito da fadiga sobre variáveis biomecânicas no ciclismo. Para isso, dois estudos foram delineados. No primeiro estudo, o objetivo foi analisar a cadência, forças no pedal e a atividade elétrica dos músculos do membro inferior durante teste de ciclismo até a exaustão. Quatorze triatletas completaram um teste incremental máximo e no dia seguinte pedalaram a uma carga correspondente a 100% do consumo máximo de oxigênio até a exaustão. Os dados de cadência, forças no pedal e eletromiografia (EMG) dos músculos glúteo máximo (GL), reto femoral (RF), vasto lateral (VL), vasto medial (VM), bíceps femoral (BF), gastrocnêmio medial (GM), tibial anterior (TA) e sóleo (SO) foram coletados e analisados a cada 10s durante o início, meio e fim do teste de fadiga. O valor root mean square (RMS) foi usado com representativo da ativação muscular total. As forças normal e tangencial aumentaram significativamente do início para o fim do teste, enquanto a cadência diminuiu significativamente. Os valores RMS do GL, VL, RF e VM aumentaram significativamente do início para o fim do teste. No entanto, a ativação não se alterou significativamente para os músculos BF, GM, TA e SO. A fadiga durante um teste até a exaustão gerou aumento na ativação do GL e extensores do joelho, na força normal e redução na cadência. A manutenção da carga de trabalho pareceu estar relacionada com maior participação do GL e VL. No segundo estudo o objetivo foi analisar os efeitos da fadiga na técnica de pedalada. Oito ciclistas de elite completaram um teste incremental máximo e no dia seguinte pedalaram em um ciclo ergômetro a carga correspondente a 100% do consumo máximo de oxigênio até a exaustão. Durante este teste, pedais instrumentados foram utilizados para avaliar a técnica de pedalada. Avaliação cinemática foi realizada para monitorar o comportamento angular do tornozelo e o ângulo do pedal. Considerando o membro inferior direito, a força resultante e a força efetiva foram calculadas para a determinação do índice de efetividade (IE). Ao longo do teste de fadiga, o IE não apresentou alterações significativas. O tornozelo apresentou aumento significativo na amplitude de movimento ao longo do teste, sendo o mesmo observado para o ângulo do pedal. Esses resultados sugeriram que a fadiga muscular levou a alteração na técnica de pedalada. As mudanças no comportamento angular do tornozelo parecem suportar a manutenção do IE durante a pedalada, mesmo quando músculos produtores de potência apresentam fadiga, conforme descrito no primeiro estudo. Tomados em conjunto, os resultados destes dois estudos sugerem que atletas apresentam mudanças na técnica de pedalada devido à fadiga, mas conseguem ajustar os padrões de ativação muscular e cinemática do membro inferior a fim de prolongar o tempo de exaustão. / Muscle fatigue can be defined as an inability to sustain a determined level of force under a given intensity, which involves physiological, biomechanical and psychological factors. The purpose of this thesis was to investigate the effects of fatigue on biomechanical aspects of cycling. Two studies were designed to evaluate fatigue up to exhaustion. For the first study, the aims were to evaluate cadence, pedal forces and electrical activity of lower limbs muscles during a cycling trial until exhaustion. Fourteen triathletes completed an incremental maximal cycling test and in the following day pedaled up to exhaustion under a workload eliciting 100% of the maximal oxygen uptake. Data of cadence, pedal forces and electromyography (EMG) from gluteus maximus (GL), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), gastrocnemius medialis (GM), tibialis anterior (TA) and soleous (SO) muscles were acquired during 10 s for the start, middle and end of the fatigue trial. The root mean square (RMS) value was used as an indicator of total muscle activation. Normal and tangential forces increased significantly from the start to the end of the test, whereas cadence statistically significantly decreased. The RMS value of GL, VL, RF and VL significantly increased from the start to the end of the test. Nevertheless, activation did not statistically change for BF, GM, TA and SO. The fatigue during cycling leaded to increases in GL and knee extensors activation, as well as in normal pedal force and to a decrease in cadence. The maintenance of the target workload appears to be related to higher participation of GL and VL. For the second study, the aim was to investigate the effects of fatigue on the pedaling technique. Eight elite cyclists completed an incremental maximal cycling test and completed a cycling test until exhaustion under workload eliciting 100% of the maximal oxygen uptake in the following day. During the test, instrumented pedals were used for evaluation of pedaling technique. Kinematic assessment was used to monitor the angular behavior of the ankle joint and of the pedal. The right lower limb resultant pedal force and effective force were computed for determination of the effectiveness index (IE). During the fatigue test, IE did not change significantly. The ankle kinematics revealed statistical increase for ankle and pedal ranges of motion with fatigue. These results suggest that muscle fatigue leads to changes in pedaling technique. The changes in ankle kinematics seems to support the IE maintenance during pedaling up to exhaustion, even so power producer muscles presented fatigue, as described in the first study. Data from both studies suggest that athletes change pedaling technique due to fatigue, but they are able to sustain patterns of muscle activation and kinematic in an attempt to prolong the time to exhaustion.
|
36 |
Brzdový systém vozidla Formule Student / Braking System of Formula Student VehicleBradáč, Jan January 2020 (has links)
Design of braking system for Formula Student vehicle. Braking system is one of the most important control system in every vehicle, even more in race car application. Only perfectly working braking system is capable bring the best results. In this diploma thesis are list of used parts with basic force calculation, design of pedal assembly in accordance with the rules of Formula Student, options for measuring and dataloging from ride for next development.
|
37 |
Electrocardiographic Findings During Standard Hands Only CPR and Hands Only CPR Plus Pedal CPR in Senior RescuersYassa, Laura Melany 01 November 2019 (has links)
The standard first aid for a heart attack resulting in cardiopulmonary arrest is effective cardiopulmonary resuscitation (CPR). Chest compressions are most commonly performed on a flat surface with the rescuer kneeling next to the victim with one hand on top of the other on the sternum and elbows straight. This technique of being on the ground may be challenging for those without the mobility and strength to get up and down from the ground. In 2005, the American Heart Association (AHA) Guidelines listed “pedal”, or heel, compression as an acceptable alternative to standard chest compressions (Trenkamp & Perez, 2015). That same year, the recommended depth of a compression increased from 3.8 cm to 5.0 cm (Trenkamp & Perez, 2015). To attain such a depth, extra force and strength arerequired. The heel method may be especially reasonable for those rescuers who cannot attain the floor and those who do not have the cardiovascular or muscular strength to perform traditional chest compressions.
The purpose of this study was to evaluate the effects of performance of hands only (HO) versus the combination (CO) of hands only plus pedal CPR on the electrocardiogram, including heart rate and heart rhythm.
The subjects utilized in this investigation were six men and nine women between 56 and 71 years of age from San Luis Obispo County in California. Subjects underwent two trials with at least a 15 hour rest period in between but no more than one week. Subjects were randomly assigned to either the Combination (CO) trial or the Hands Only (HO) trial. When they came back for their second trial, they did the trial that they did not do the first time.
On average, participants were able to sustain the combination of HO plus pedal CPR longer (9.47 minutes) than they were able to perform standard HO CPR (9.02 minutes) but this difference was not statistically significant (p=0.16). Mean maximum heart rate was 133 ± 23.7 bpm during the CO trial and 125.4 ± 21.9 bpm during the HO trial (p=0.12). Mean percentage of the HR reserve was 75.1% during the CO trial and 61.1% during the HO trial (p=0.09). Mean RPE was not significantly different between CO and HO trials (p=0.2124), nor between genders (p=0.42090). However, for both trials combined the mean RPE was significantly greater at 5 minutes of CPR (4.45 ± 0.53) than at 2 minutes of CPR (3.38 ± 0.31), (p
It may take time for individuals to accept pedal CPR as a viable resuscitation method. With the majority of sudden cardiac arrests occurring in the home among older adults in society, it is important to recognize that pedal CPR is an acceptable method and that a rescuer may have this choice if they either need a break from standard CPR or if they can not attain the ground.
|
38 |
Porovnání aktivity svalů při cyklistickém kroku za použití nášlapných a klasických pedálů / Comparative of muscle activity during the cycling step with the use of clipless and normal pedalsNováková, Martina January 2018 (has links)
Title: Comparative of muscle activity during the cycling step with the use of clipless and normal pedals. Objectives: Diploma thesis objective is to compare muscle activity during pedaling cycle with/without clipless pedal. Using EMG we want to establishe, if 6 chosen muscles are showing significant involvement difference for pedaling with/without clipless pedals. Methods: It is combination of empirical - theoretical thesis. Our work consists of intra- and interindividual comparative analytical study. We used two comparative methods for EMG signal evaluation - Pearson correlation coefficient and comparison with use of signed area of the region bounded by its graph. Results: The results of the correlation analysis show a high degree of compliance of the average normalized envelope diagrams for a cycling step with and without clipless. Based on the comparison of areas under the EMG curve, there is no higher muscle activation potential for the classic pedal. Keywords: cyclist, pedal, cycling step, muscle aktivity, electromyography
|
39 |
Full circle: becoming a pedal steel guitaristStern, Jordan Christopher 16 August 2022 (has links)
Considering the cultural importance of country-western music in the United States, especially in places such as Texas, the exclusion of country-western music from the musical offerings of public schools and universities (Bates, 2019; Bates, Gossett, & Stimeling, 2020) could be seen as problematic. Furthermore, the absence of the country-western style from formal music education has led to the concomitant exclusion of an an entire musical instrument from formal music study: the pedal steel guitar. The purpose of this inquiry was to engage in the lived experience of becoming a pedal steel guitarist in order to ascertain how I, as a learner of an instrument primarily used in country-western music, could interact with others within both the country-western and pedal steel guitar communities of practice as I gained competence as a pedal steel guitarist. Using communities of practice (Wenger, 1998) and landscapes of practice (Wenger-Trayner & Wenger-Trayner 2014) as a theoretical framework, I employed autoethnographic methods to document the lived experiences contained within an 18-month period in which I progressed from a nascent pedal steel guitarist, to performing professional gigs at various dance halls and honky-tonk bars. Data collection methods included journal entries, interviews with accomplished pedal steel guitarists, and the creation of artifacts such as tablature transcriptions and recordings. I created a short ethnodrama (Saldaña, 2011) to elucidate the conflict I felt between various aspects of my musical identity as my previous musical experiences both enabled and inhibited my new learning project. After analyzing my pedal steel learning project using language from Wenger’s (1998) framework of communities of practice, I concluded that Wenger’s interlocking concepts of participation and reification respectively served as the propulsion and rudder that allowed me to traverse my learning trajectory. In addition, I discussed impications of my research for music teachers, such as destigmatizing the role of mistakes (such as wrong notes) in the learning process; music teacher educators, such as the importance of facilitating boundary experiences for preservice teachers in order to broaden knowledgeability; and music learners¬, such as the benefits that can come from—to quote my pedal steel mentor Bobby Flores—“diving into that cold river with no inhibitions” when it comes to learning a new instrument.
|
40 |
Curvas pedais e Teorema dos Quatro Vértices : uma introdução à geometria diferencialOliveira, Marina Mariano de January 2018 (has links)
Orientador: Prof. Dr. Marcus Antônio Mendonça Marrocos / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional - PROFMAT, Santo André, 2018. / Neste trabalho, apresentamos a geometria diferencial das curvas planas de um modo
mais acessível para um leitor não especialista no assunto, mas de forma a despertar seu
interesse. A Teoria Local das Curvas Planas é desenvolvida por meio de exemplos e, em
particular, exibimos a família das curvas pedais. Ilustramos a Teoria Global por meio do
Teorema dos Quatro Vértices e apresentamos, também, formas de explorar os conceitos
de geometria diferencial na Educação Básica, com resultados geométricos interessantes
e visualmente atraentes. Para isso, contamos com o auxílio do GeoGebra, um software
de matemática dinâmica, e da string art, um estilo de arte caracterizado por um arranjo
de cordas que formam padrões geométricos. Com isso, buscamos proporcionar ao
leitor uma forma diferente de experimentar a geometria diferencial das curvas planas,
bem como proporcionar aos alunos do Ensino Médio um aprendizado interessante de
geometria analítica. / In this work, we present the differential geometry of the plane curves in an accessible
way for not specialized readers in the subject, but in order to arouse their interest.
The Local Theory of Plane Curves is developed by means of several examples and, in
particular, we bring out the class of pedal curves. In order to ilustrate the Global Theory
we present the Four-Vertex Theorem and we also present a way to introduce differential
geometry concepts to secondary school students with interesting and visually attractive
geometric results. To do this, we use the software GeoGebra, a interactive geometry
and algebra application, and string art, a sort of art characterized by an arrangement
of strings that form geometric patterns. We hope to provide to the readers a pratical
experience of differential geometry of plane curves, as well as providing them the
students of High School with an interesting learning of analytical geometry.
|
Page generated in 0.0221 seconds