• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Magnetically actuated peel test for thin film interfacial fracture and fatigue characterization

Ostrowicki, Gregory Thomas 07 November 2012 (has links)
Delamination along thin film interfaces is a prevalent failure mechanism in microelectronic, photonic, MEMS, and other engineering applications. Current interfacial fracture test techniques specific to thin films are limited by either sophisticated mechanical fixturing, physical contact near the crack tip, non-representative test specimens, or complicated stress fields. Moreover, these techniques are generally not suitable for investigating fatigue crack propagation under cyclical loading. A fixtureless and noncontact experimental test technique is thus proposed and implemented to study interfacial fracture for thin film systems. The proposed test incorporates permanent magnets surface mounted onto micro-fabricated released thin film structures. An applied external magnetic field induces noncontact monotonic or fatigue loading to initiate delamination along the interface between the thin film and underlying substrate. Characterization of the film deflection, peel angle, and delamination propagation is accomplished through in situ optical techniques. Analytical and finite-element models are used to extract fracture parameters from the experimental data using thin-film peel mechanics. The developed interfacial fracture test has been demonstrated for Cu thin films on a SiO₂/Si substrate.
12

Development of High Toughness Bioactive Composites Using Electrospinning Techniques

Baji, Avinash 17 December 2008 (has links)
No description available.
13

Review of Earlier Thesis work at BTH Related to Packaging and Packaging Field

Ahmad, Abu ul Hasnat January 2021 (has links)
This work aims at giving a systematic review of the numerical approaches and obtained results published in recent years. Focus is set on both the recent trends and achievements as well as challenges and open questions. Thesis critically reviews work done in previous thesis related to food packaging material and design, at Blekinge Institute of Technology with the collaboration of Tetra Pak liquid food packaging company. Here, 27 numbers of master’s thesis are critical review all the while using 4 PHD works for referencing.  Focus of these thesis works relates to the mechanics and its sub-branch fracture mechanics. Due to this all the theory related to mechanics and fracture mechanics, which is compulsory to know for understanding is defined initially. Main material which are under consideration throughout the work are PP, LDPE, PET-LDPE, and aluminum foil. As three materials are used in the liquid food packaging which are PE, paper board and aluminum. Uses of this material and there required physical properties are measured. Testing methods which are used to check whether the material meets the required parameters are tensile testing, tear testing, peel testing and shear test.  Also, some methods are used along with these tests to perform the test more precisely, to evaluate and compare result i.e., Nakajima test, Digital image correlation. DIC testing technique is used to compare the results obtained from simulation. It is also understood that DIC method provided the user with increased quality of obtained results.  Most of the topics of discussions have been reviewed for corresponding thesis, displaying the used ideas, theory, applied experimentation and realized conclusions. Using these above it was able to derive a conclusion based on the developed research questions and hypothesis. Defined problems in previous work are studied also solution as a future work is suggested to overcome these problems. Mainly the slippage issue while holding PE in clamps. Furthermore, various development is discussed which is done to introduce new material which is more possible being used in the future.
14

DEVELOPMENT OF SCRATCH RESISTANT PECVD SILICA-LIKE FILMS

CHAKRAVARTY, SRINIVAS L.N. January 2000 (has links)
No description available.
15

Durabilité d'assemblages métal/élastomère en milieu marin / Durability of Metal/rubber assemblies in marine environment

Tchalla, Tatiana Siwavi 11 December 2017 (has links)
Dans des contextes industriels spécifiques, coller un revêtement épais élastomère à des canalisations en acier constitue le meilleur moyen de les protéger de la corrosion en milieu marin. Ce travail de thèse a principalement pour objectif de mieux appréhender le comportement à long terme de ces assemblages acier/colle/revêtement en milieu marin. Deux approches complémentaires ont été définies. La première se base sur des outils statistiques pour traiter les données de caractérisations physico-chimiques des matériaux issus des assemblages utilisés en service depuis plus de trente ans. A partir de ces données hétérogènes (les assemblages sont différents en termes de formulations des matériaux, de procédé de collage et de conditions de vieillissement); des groupes homogènes présentant des scénarios de vieillissement identiques ont été identifiés et les mécanismes majeurs de dégradation du revêtement ont été établis. La seconde approche se focalise sur les assemblages actuellement utilisés dans les opérations de rénovation. Une démarche expérimentale a donc été mise en place en laboratoire afin d’accélérer de manière contrôlée le vieillissement des matériaux et assemblages. Les objectifs sont multiples. Pour chaque matériau (revêtement et colle), il s’agissait de comprendre les mécanismes de dégradation et les cinétiques d’absorption d’eau qui expliquent les évolutions de propriétés mécaniques et physico-chimiques observées au cours du vieillissement. De même, les interfaces ont été caractérisées et les paramètres de procédé qui influent sur la tenue de l’interface métallique ont été identifiés. Cette approche découplée a permis de mieux comprendre le comportement en milieu marin de l’assemblage d’étude à partir de celui des matériaux et interfaces présentes. / In some industrial applications, bonding rubber coatings to metallic pipelines is a suitable solution to protect them from marine corrosion. This study deals with the long term behavior of such metallic coated pipelines in a marine environment. Two different approaches have been developed. The first focuses on degradation data of pipelines used for around thirty years in normal service conditions. As these bonded assemblies are different in terms of material formulations, manufacturing processes and aging conditions, statistical tools were used to identify homogeneous groups with identical aging mechanisms. Also, based on these results, the main degradation mechanisms of the rubber coating were established. The second approach focused on pipelines used currently in renovation operations. An experimental methodology was developed in the laboratory to accelerate aging processes. The bulk materials, surfaces and interfaces were characterized physically, chemically and mechanically before and after natural sea water ageing. This enabled an understanding of the mechanisms and kinetics governing adhesion and degradation to be developed. It also allowed the influence of sea water aging on the failure strength of the assembly of interest to be investigated.
16

Interfacial Structure of Bilayer Compensation Films Prepared by Direct Coating Process

Yu, Wumin 11 December 2012 (has links)
No description available.
17

Towards the predictive FE analysis of a metal/composite booster casing’s thermomechanical integrity

Capron, Adélie 30 November 2020 (has links) (PDF)
In response to serious environmental and economic concerns, the design and production of aircrafts have been changing profoundly over the past decades with the nose-to-tail switch from metallic materials to lightweight composite materials such as carbon fibre reinforced plastic (CFRP). In this context, the present doctoral research work aimed to contribute to the development of a CFRP booster casing, a real innovation in the field initiated and conducted by Safran Aero Boosters. More specifically, this thesis addresses the matter of joining metal/CFRP hybrid structures, which are prone to possibly detrimental residual stresses.The issue is treated with an approach combining experimental characterisation and finite element (FE) simulations. The multi-layered system’s state of damage was systematically examined on hundreds of micrographs, and the outcome of this study is presented under the form of a statistical analysis. Further, the defects’ 3D morphology is investigated by incremental polishing. A number of thermal and mechanical properties are measured by diverse physical tests on part of the constituent materials, i.e. the aerospace grade RTM6 epoxy resin, the structural Redux 322 epoxy film adhesive, and AISI 316L stainless steel. They are used as input data in a FE model of the multilayer that is developed and progressively refined to obtain detailed residual stress fields after thermal loading. These results are compared to experimental data acquired by X-ray diffraction stress analysis and with the curvature-based Stoney formula. Cohesive elements are placed at specific locations within the FE model to allow simulating progressive damage. Peel tests, mode I, mode II and mixed mode I/II fracture tests are thus performed in view of measuring the joint toughness. The results of these tests are discussed and the presence of residual stress in the fracture specimens is highlighted. Key information for the calibration of the cohesive law is finally identified via inverse FE analysis of the mode I test, this being a significant step in the process of building a damage predictive FE model of the multi-layered system. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished

Page generated in 0.066 seconds