• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Preliminary Study of Carbonate Chemistry in the Kuroshio regime off the Eastern Taiwan

Li, Fu-Shiang 26 June 2003 (has links)
In order to understand the input of South China Sea Water (SCSW) onto the Kuroshio and the distributions of carbonate parameters in Kuroshio Water (KW), the temperature, salinity, pH and TCO2 were measured for the seawater samples collected from the Kuroshio regime off eastern Taiwan during the cruise ORI 650 in July 2002. The distributions of temperature and salinity show that a front existed approximately along 123.5ºE, which separated the influenced KW by SCSW from typical KW. East of this front the water is characterized by temperature and salinity of KW, while west of it the water was mainly a mixture of the SCSW and the KW. After flowing out from the Luson Straint, the SCSW deflected northward along the east cost of Taiwan, and continuously mixed with the KW. The mixing of SCSW with KW could be traced northward as far as 22ºN and reach as deep as 1250m. Based on the measured carbonate data, the calculated IC/OC ratio ranges from 22% to 23% in the deep water of the Kuroshio region. Additionally, the penetration depth of anthropogenic CO2 was estimated to be about 1200m by using Chen¡¦s equation (Chen et al., 1986). Furthermore, the difference of pCO2 between atmosphere and surface seawater was evaluated to be about -5matm, indicating that the surface water in the study area was nearly saturated with pCO2 during the sampling period.
2

Nízkoteplotní část hloubky vniku v konvenčních a nekonvenčních supravodičích / Low temperature part of penetration depth in conventional and unconventional superconductors

Baničová, Lucia January 2011 (has links)
In the present work I study temperature dependence of magnetic penetration depth in superconductors which allows us to determine the symetry of the order parameter, important for theoretical models. In conventional superconductors we talk about s-symetry. Energy gap is isotropic and as a consequence of this fact penetration depth grows exponencialy with the temperature. On the other hand, in unconventional superconductors with d-symetry we find the power dependence on the temperature. Anyway the exponent depends on impurities and structure of the material and the influence of these parametrs is not completely clear at the moment.
3

Antibody screening using a biophotonic array sensor for immune system response profile

Read, Thomas January 2013 (has links)
With a population both increasing in number and age, comes a need for new diagnostic tools in the healthcare system, capable of diagnosing and monitoring multiple disorders in a cheap and effective way to provide personalised healthcare. Multiplex label-free biosensors have the potential to rejuvenate the current system. This thesis details the assessment of an ‘in house’ built labelfree array screening technology that has potential to be a point-of-care diagnostic for personalised medicine – the Array Reader. The performance of the Array Reader platform is considered in detail and optimised for both antibody and protein screening arrays. A Global Fit protocol is developed to extract kinetic constants for all protein-protein interactions, assuming a Langmuir adsorption binding model. Standard operating procedures are developed to provide optimised dynamic range, sensitivity, reproducibility and limit of detection of immuno-kinetic assay. A new antibody bio-stack signal amplification strategy is formed, improving the detection limit 60-fold. As a consequence, the bio-stack resulted in a novel method for determining the plasmon field penetration depth, defining the assay sensing volume at the nanoparticle surface. Antibody screening arrays were investigated with an IgG quantification assay to determine total IgG content from serum samples. It relied on the ability of protein A/G to bind antibodies via the Fc region. Specific antigens were used to measure the binding properties of the antibody Fab region. By characterising both regions, we have gained insight into the overall ability of an antibody to trigger an immune response. Protein screening assay were investigated targeting C-reactive protein (CRP), a marker of inflammation. The assays performance characteristics compared favourably with clinically used CRP assays. Finally, an antibody screening array was developed to assess the efficacy of a vaccine against Yersinia pestis in a non-human primate model. The vaccine screening array is an excellent example of the versatility of the platform and just one of many possible applications for the future.
4

Studies of float glass surfaces by neutron and x-ray reflection

Dalgliesh, R. M. January 2001 (has links)
No description available.
5

Ultra-low Temperature Measurements of London Penetration Depth in Iron Selenide Telluride Superconductors

Diaconu, Andrei 20 December 2013 (has links)
The newly discovered iron based superconductors have captivated the attention of the scientific community due to the unusual mechanism behind their superconductivity and their promise as the next generation high temperature superconductors. After a century of superconductor research, the physical mechanism behind high temperature superconductivity is still not understood. These new materials bring renewed hope in elucidating the pairing mechanism responsible with high temperature superconductors and achieving the ultimate goal of the field, room temperature superconductivity. Consequently, a deeper understanding of the intriguing properties of iron based materials is essential. A great deal about the pairing mechanism of Cooper electron pairs can be inferred from the symmetry of their pairing wave function or order parameter. One of the most involved probes for studying the pairing symmetry is the London penetration depth. The low temperature behavior of London penetration depth in superconductors is directly related to the density of states and provides a powerful tool for investigating low-lying quasiparticle energy and, for this very reason, can give valuable hints on superconducting gap symmetry. The work presented focuses on investigating the pairing symmetry in the Fe1+y(Te1−xSex) system using a radio-frequency tunnel diode oscillator (TDO) technique for precise measurements of the temperature dependence of their in-plane penetration depth. The TDO technique, based on an original concept involving the use of planar inductors in an novel configuration, was implemented on a dilution refrigerator to investigate a significant number of single crystal samples, with nominal Se concentrations of 36%, 40%, 43% and 45% respectively, down to temperatures as low as 50 mK. A systematic study together with a comprehensive analysis regarding the order parameter symmetry in the Fe1+y(Te1−xSex) system is presented. In many cases we found that London penetration depth shows an upturn below at low temperatures, indicative of a paramagnetic-type contribution. Also the low-temperature behavior of penetration depth is best described by a quadratic power law with no systematic dependence on the Se concentration. Most importantly, in the limit of T → 0, in some samples we observed a narrow region of linear temperature dependence, suggestive of nodes in the superconducting gap of Fe1+y(Te1−xSex).
6

A study of some aspects of gas-slag-metal interactions : Towards dynamic process model and control

Ek, Mattias January 2012 (has links)
The present thesis deals with the development of a new type of dynamic model for metallurgical reactors. It also covers some of the theoretical aspects of steelmaking that is necessary to include in such an application. The thesis consists of modeling work, high temperature experiments and cold model experiments. Two different aspects of slags in the oxygen steelmaking were investigated. In the first study, slag samples were equilibrated with copper at 1923K in order to study their capacities in capturing phosphorous. Some of the samples were liquid-solid mixtures. The solid phases in these samples were identified by SEM analysis. The identified phases were found to agree well with Thermocalc calculations while the amount of solid fractions didn’t. The phosphorous distribution between the different phases was examined. The phosphate capacities of the samples were evaluated. The MgO content didn’t show any appreciable impact on the phosphate capacity. Furthermore the activities of FeO in the liquid slag samples were calculated and were found to deviate positively from ideality. In the second study the foaming height of CaO-SiO2-FeO slags by the reaction with hot metal was investigated. It was found that the foaming height increased with increasing FeO content up to 20-25%. The foaming height was seen to decrease with increased viscosity. The present results indicated that simply using foaming index for converter slag might lead to wrong conclusion. Simulation experiments using cold model at room temperature were conducted. Cold model experiments were carried out in order to study the penetration depth due to an impinging gas jet on the surface of a liquid metal. The liquid alloy Ga-In-Sn was used to simulate steel. And an HCl solution was used to simulate the slag. A comparison with predictions of existing models was made and a new model parameter was suggested. The observation of the movement of metal droplets generated by the gas jet was also made. The low velocity of droplets suggested that the turbulent viscosity played important role and the droplets could have long resident time in the slag. Furthermore a study of the effect of gas flow rate on homogenization and inclusion removal in a gas stirred ladle was carried out. Both industrial trials and cold model experiments were conducted. As an auxiliary tool CFD was used to predict the mixing times and was found to agree well with both the model experiments and industrial data. The increase of flow rate of inert gas would not improve the mixing substantially at higher flow rates. The water model study showed also that the gas flow rate had negligible effect on the rate of inclusion removal. Both the experiments and CFD calculation strongly suggested that low gas flow rate should be applied in the ladle treatment. Lastly a new approach to a dynamic process model of 300 ton BOF converter was made. The main feature was to utilize the velocity vectors obtained by CFD simulation. In the standalone model, the steel melt domain was sliced into 1000 cells. Based on the imported velocity vectors from the CFD calculation, the mass transfer of carbon and phosphorus was calculated taking into account the slag metal reactions. The mass exchange between slag and metal was considered to be dominated by the metal droplet formation due to oxygen jet. The convergence of the model calculation and the promising comparison between the model prediction and the industrial data strongly suggested that the proposed approach would be a powerful tool in dynamic process control. However, more precise descriptions of other process aspects need to be included before the model can be practically employed in a dynamic controlling system. / <p>QC 20120829</p>
7

Post-permeation stability of modified bentonite suspensions under increasing hydraulic gradients

El-Khattab, May Mohammad 05 November 2013 (has links)
Slurry wall is a geotechnical engineering application to control the migration of contaminants by retarding groundwater flow. Sand-bentonite slurry walls are commonly used as levees and containment liners. The performance of bentonite slurry in sand-bentonite slurry walls was investigated by studying the rheological properties of bentonite suspensions, the penetration length of bentonite slurry into clean sand, and stability of the trench under in-situ hydraulic gradients. In this study, the rheological parameters of bentonite suspensions were measured at various bentonite fractions by weight from 6 to 12% with 0-3% of sodium pyrophosphate; an ionic additive to control the rheological properties of the bentonite slurries. The penetrability of the bentonite slurries through Ottawa sand was studied by injecting the slurries into sand columns at different bentonite fractions. The injection tests were performed with the permeameters having different diameters to eliminate any bias on test results due to the different size of permeameter. An empirical correlation for predicting the penetration length of bentonite slurry based on apparent viscosity, yield stress, effective particle size, relative density, and injection pressures was updated by taking into account the effects of the permeameter diameter size. Moreover, the stability of sand-bentonite slurry walls was inspected by studying the hydraulic performance of sand permeated with bentonite suspensions under increasing hydraulic gradients. The critical hydraulic gradient at which washing out of bentonite suspensions is initiated was examined. For specimens with bentonite contents less than the threshold value, the flow occurred through the sand voids and minimal washing out occurred. On the other hand, when the bentonite content was high enough to fill up all the void space between the sand particles, the flow was controlled by the clay void ratio. In this case, washing out did occur with increasing gradients accompanied by an increase in hydraulic conductivity. Accordingly, a relation between the yield stress of bentonite suspensions and the critical hydraulic conductivity was developed. / text
8

Developing and Evaluating Rapid Test Methods for Measuring the Sulphate Penetration Resistance of Concrete in Relation to Chloride Penetration Resistance

Karkar, Ester 12 December 2011 (has links)
External sulphate attack on concrete can lead to cracking, expansion and sometimes loss of cohesiveness of hardened cement paste. Therefore, aside from using sulphate resistant cementitious binders, it is important to design concrete which can resist sulphate penetration. In this research, both ASTM C1202 and NT Build 492 electrical migration tests were modified such that sulphate rather than chloride penetration resistances were measured. Modifications included exposing concrete specimens to Na2SO4 rather than NaCl solutions and measuring the depth of sulphate penetration visually using BaCl2+KMnO4 rather than AgNO3 solution. Nine concrete mixtures of varying w/cm, slag replacement and cement types were tested in both original standard tests and modified tests to evaluate the influence of these material variables on test results and compare chloride to sulphate results. It was found that while migration coefficients and total charge passing were lower for sulphate, the influence of material variables were relatively similar.
9

Developing and Evaluating Rapid Test Methods for Measuring the Sulphate Penetration Resistance of Concrete in Relation to Chloride Penetration Resistance

Karkar, Ester 12 December 2011 (has links)
External sulphate attack on concrete can lead to cracking, expansion and sometimes loss of cohesiveness of hardened cement paste. Therefore, aside from using sulphate resistant cementitious binders, it is important to design concrete which can resist sulphate penetration. In this research, both ASTM C1202 and NT Build 492 electrical migration tests were modified such that sulphate rather than chloride penetration resistances were measured. Modifications included exposing concrete specimens to Na2SO4 rather than NaCl solutions and measuring the depth of sulphate penetration visually using BaCl2+KMnO4 rather than AgNO3 solution. Nine concrete mixtures of varying w/cm, slag replacement and cement types were tested in both original standard tests and modified tests to evaluate the influence of these material variables on test results and compare chloride to sulphate results. It was found that while migration coefficients and total charge passing were lower for sulphate, the influence of material variables were relatively similar.
10

IRONARC; a New Method for Energy Efficient Production of Iron Using Plasma Generators

Bölke, Kristofer January 2015 (has links)
The most widely used process to reduce iron ore and to produce pig iron is the blast furnace. The blast furnace is a large source of CO2 emissions since it is a coal based process and due to that the main energy source and reducing agent is coke, it is difficult to reduce these further. IRONARC is a new method used to produce pig iron by reducing iron ore and all the energy used for heating comes from electricity, which gives the opportunity to use renewable resources. The process uses plasma generators that inject gas at high temperature and velocity into a slag that consists of iron oxides. The iron oxides are reduced in two steps that appear by using gas as reduction agent in the first step and carbon in the second step.   It exists in a smaller pilot plant scale and this project was the first step in the future upscaling of the IRONARC process. Computational Fluid Dynamics (CFD) modelling was used and the goal was to determine the penetration depth of the IRONARC pilot plant process by numerical simulation in the software ANSYS FLUENT. The penetration depth is of importance because to be able to scale up the process it is important to know the flow pattern and the structure of the flow in the process, which is dependent on how far into the slag the gas reaches. Two numerical models were made. First an air-water model that described the initial penetration of air injected into water. The air-water simulation was made with parameters and data from an experiment found in literature. This was done to build an accurate CFD model for the penetration depth in FLUENT and validate the model with the results of the penetration depth from the experiment. The air-water simulation gave good and promising results and yielded the same result regarding the penetration depth as the experiment.  The model for the penetration depth was then used with the IRONARC geometry and parameters. After simulation the penetration depth of the IRONARC process was determined. For the future, the penetration depth of the pilot plant needs to be measured and compared with the simulated result for the penetration depth.

Page generated in 0.0865 seconds