• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reconhecimento facial usando descritores locais e redes complexas / Face recognition using local descriptors and complex networks

Piotto, João Gilberto de Souza 12 December 2016 (has links)
A busca por métodos de leitura biométrica tem crescido muito, alimentada pelas necessidades governamentais, militares e comerciais. Pesquisas indicam que o mercado de reconhecimento facial vai movimentar bilhões de dólares nos próximos anos. Dessa forma, encontrar métodos que atendem situações específicas impulsiona novos avanços nessa área. Cada aplicação de reconhecimento de faces precisa de uma solução particular. Há casos que o tempo de resposta é o fator mais importante; outros exigem que a face seja classificada mesmo que de forma parcial. Em todas essas situações, a acurácia e a robustez talvez sejam os atributos mais importantes. Entretanto, na maioria das vezes, tais características se comportam como grandezas inversas: aumentado o grau de confiança dos resultados o desempenho do método será afetado. Por isso, desenvolver uma metodologia que equilibra tais fatores é essencial para a construção de soluções aceitáveis. Este trabalho apresenta um novo algoritmo de reconhecimento facial, baseado em descritores locais e em redes complexas. O método é capaz de concentrar a informação, antes distribuída pelos diversos pontos dos descritores, em um único vetor de características, tornando a classificação mais rápida e eficiente. Além disso, o outro foco da metodologia é reduzir etapas de pré-processamento, evitando que processos sejam executados de forma desnecessária. Os experimentos foram realizados com bancos de faces bem conhecidos na literatura, revelando taxas de acurácia de até 98,5%. A técnica também apresentou bons resultados mesmo quando havia ruídos nas amostras, muitas vezes oriundos de objetos presentes na composição do cenário. Para uma análise complementar, algoritmos clássicos de reconhecimento facial foram submetidos ao mesmo conjunto de dados, gerando assim resultados comparativos entre as metodologias. / The search for biometric scanning methods has grown a lot due to government, military and commercial needs. Researches indicate the face recognition market will move billions of dollars in next years. Thus, finding methods to specific situations drives new advances in this area. Each application face recognition requires a particular solution. There are cases the response time is the most important factor; others require that face must be classified even if partially. In all these situations, accuracy and robustness may be the most important attributes. However, in most cases, these features behave as inverse greatness: increasing the confidence level of the results the method performance will be affected. Therefore, create the method which balances these factors is essential for construction of acceptable solutions. This paper presents a new face recognition algorithm based on local descriptors and complex networks. The method is able to concentrate the information before distributed by various point descriptors, in a unique feature vector. It makes the classification step faster and more efficient. Furthermore, another focus of the method is reduce pre-processing steps, avoiding unnecessary processes. The experiments were conducted with faces datasets well known in the literature, revealing accuracy rates of up to 98.5%. The technique also showed good results when there was noise in the samples, often derived from objects present in the composition of the scene. For additional analysis, classical facial recognition algorithms were subjected to the same data set, generating comparative results between both methodologies.
2

Reconhecimento facial usando descritores locais e redes complexas / Face recognition using local descriptors and complex networks

Piotto, João Gilberto de Souza 12 December 2016 (has links)
A busca por métodos de leitura biométrica tem crescido muito, alimentada pelas necessidades governamentais, militares e comerciais. Pesquisas indicam que o mercado de reconhecimento facial vai movimentar bilhões de dólares nos próximos anos. Dessa forma, encontrar métodos que atendem situações específicas impulsiona novos avanços nessa área. Cada aplicação de reconhecimento de faces precisa de uma solução particular. Há casos que o tempo de resposta é o fator mais importante; outros exigem que a face seja classificada mesmo que de forma parcial. Em todas essas situações, a acurácia e a robustez talvez sejam os atributos mais importantes. Entretanto, na maioria das vezes, tais características se comportam como grandezas inversas: aumentado o grau de confiança dos resultados o desempenho do método será afetado. Por isso, desenvolver uma metodologia que equilibra tais fatores é essencial para a construção de soluções aceitáveis. Este trabalho apresenta um novo algoritmo de reconhecimento facial, baseado em descritores locais e em redes complexas. O método é capaz de concentrar a informação, antes distribuída pelos diversos pontos dos descritores, em um único vetor de características, tornando a classificação mais rápida e eficiente. Além disso, o outro foco da metodologia é reduzir etapas de pré-processamento, evitando que processos sejam executados de forma desnecessária. Os experimentos foram realizados com bancos de faces bem conhecidos na literatura, revelando taxas de acurácia de até 98,5%. A técnica também apresentou bons resultados mesmo quando havia ruídos nas amostras, muitas vezes oriundos de objetos presentes na composição do cenário. Para uma análise complementar, algoritmos clássicos de reconhecimento facial foram submetidos ao mesmo conjunto de dados, gerando assim resultados comparativos entre as metodologias. / The search for biometric scanning methods has grown a lot due to government, military and commercial needs. Researches indicate the face recognition market will move billions of dollars in next years. Thus, finding methods to specific situations drives new advances in this area. Each application face recognition requires a particular solution. There are cases the response time is the most important factor; others require that face must be classified even if partially. In all these situations, accuracy and robustness may be the most important attributes. However, in most cases, these features behave as inverse greatness: increasing the confidence level of the results the method performance will be affected. Therefore, create the method which balances these factors is essential for construction of acceptable solutions. This paper presents a new face recognition algorithm based on local descriptors and complex networks. The method is able to concentrate the information before distributed by various point descriptors, in a unique feature vector. It makes the classification step faster and more efficient. Furthermore, another focus of the method is reduce pre-processing steps, avoiding unnecessary processes. The experiments were conducted with faces datasets well known in the literature, revealing accuracy rates of up to 98.5%. The technique also showed good results when there was noise in the samples, often derived from objects present in the composition of the scene. For additional analysis, classical facial recognition algorithms were subjected to the same data set, generating comparative results between both methodologies.
3

Inferência de gramática formais livres de contexto utilizando computação evolucionária com aplicação em bioinformática

Rodrigues, Ernesto Luis Malta 10 2011 (has links)
A inferência gramatical lida com o problema de aprender um classificador capaz de reconhecer determinada construção ou característica em um conjunto qualquer de exemplos. Neste trabalho, um modelo de inferência gramatical baseado em uma variante de Programação Genética é proposto. A representação de cada indivíduo é baseada em uma lista ligada de árvores representando o conjunto de produções da gramática. A atuação dos operadores genéticos é feita de forma heurística. Além disto, dois novos operadores genéticos são apresentados. O primeiro, denominado Aprendizagem Incremental, é capaz de reconhecer, com base em exemplos, quais regras de produção estão faltando. O segundo, denominado Expansão, é capaz de prover a diversidade necessária. Em experimentos efetuados, o modelo proposto inferiu com sucesso seis gramáticas regulares e duas gramáticas livres de contexto: parênteses e palíndromos de quatro letras, tanto o comum quanto o disjunto, sendo superior a abordagens recentes. Atualmente, modelos de inferência gramatical têm sido aplicados a problemas de reconhecimento de sequências biológicas de DNA. Neste trabalho, dois problemas de identificação de padrão foram abordados: reconhecimento de promotores e splice-junction. Para o primeiro, o modelo proposto obteve resultado superior a outras abordagens. Para o segundo, o modelo proposto apresentou bons resultados. O modelo foi estendido para o uso de gramáticas fuzzy, mais especificamente, as gramáticas fuzzy fracionárias. Para tal, um método de estimação adequado dos valores da função de pertinência das produções da gramática é proposto. Os resultados obtidos na identificação de splice-junctions comprovam a utilidade do modelo de inferência gramatical fuzzy proposto. / Grammatical inference deals with the task of learning a classifier that can recognize a particular pattern in a set of examples. In this work, a new grammatical inference model based on a variant of Genetic Programming is proposed. In this approach, an individual is a list of structured trees representing their productions. Ordinary genetic operators are modified so as to bias the search and two new operators are proposed. The first one, called Incremental Learning, is able to recognize, based on examples, which productions are missing. The second, called Expansion is able to provide the diversity necessary to achieve convergence. In a suite of experiments performed, the proposed model successfully inferred six regular grammars and two context-free grammars: parentheses and palindromes with four letters, including the disjunct one. Results achieved were better than those obtained by recently published algorithms. Nowadays, grammatical inference has been applied to problems of recognition of biological sequences of DNA. In this work, two problems of this class were addressed: recognition of promoters and splice junction detection. In the former, the proposed model obtained results better than other published approaches. In the latter, the proposed model showed promising results. The model was extended to support fuzzy grammars, namely the fuzzy fractional grammars. Furthermore, an appropriate method of estimation of the values of the production's membership function is also proposed. Results obtained in the identification of splice junctions shows the utility of the fuzzy inference model proposed.

Page generated in 0.0414 seconds