Spelling suggestions: "subject:"percolação (física estatística)"" "subject:"percolação (phísica estatística)""
1 |
Estudo tridimensional dos efeitos devido a força de percolação em barragens de enrocamento com face de concreto / Tridimentional study of the efects due to seepage forces in concrete face rockfill damsRaposo, Renato Santos Paulinelli 14 March 2016 (has links)
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2016. / Submitted by Camila Duarte (camiladias@bce.unb.br) on 2016-07-22T12:52:07Z
No. of bitstreams: 1
2016_RenatoSantosPaulinelliRaposo.pdf: 9017099 bytes, checksum: 0654d613ad2110de4b239635a4526fb0 (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2017-02-15T21:40:50Z (GMT) No. of bitstreams: 1
2016_RenatoSantosPaulinelliRaposo.pdf: 9017099 bytes, checksum: 0654d613ad2110de4b239635a4526fb0 (MD5) / Made available in DSpace on 2017-02-15T21:40:50Z (GMT). No. of bitstreams: 1
2016_RenatoSantosPaulinelliRaposo.pdf: 9017099 bytes, checksum: 0654d613ad2110de4b239635a4526fb0 (MD5) / As Barragens de Enrocamento com Face de Concreto (BEFC) são usadas em locais com grandes volumes de escavação obrigatórias em rocha, apresentando baixo custo, grande flexibilidade construtiva e segurança em longo prazo em termos de estabilidade e abalos sísmicos. Melhorias nos critérios de projeto e processos executivos encorajam empreendimentos cada vez mais altos e em vales mais fechados, ou seja, em condições menos favoráveis. Mesmo com os avanços em métodos de simulações numéricas aplicados a projetos, ainda são registrados casos de grandes rupturas na laje de vedação que não foram previstas e surpreendem consultores e especialistas da área. Pelo padrão das rachaduras, são formuladas hipóteses que buscam explicar o fenômeno por meio de resultados de simulações tridimensionais em construção por etapas e as simulações ainda consideram interface entre o enrocamento e o concreto. O presente estudo está embasado no propósito de verificar se as forças de percolação desenvolvidas pela ombreira, formadas com o enchimento do reservatório, tendem ou não a comprimir a barragem como um todo e contribuir para o desenvolvimento de trincas verticais, com o esmagamento do concreto da face de montante dos barramentos, comprometendo assim o seu desempenho. A metodologia é fundamentada em simulações tridimensionais de percolação que fornecem as forças provenientes do fluxo de água posteriormente aplicadas em simulações de tensão-deformação para avaliar o seu efeito sobre a laje. A geometria e os parâmetros da barragem simulada foram embasados em arranjos de BEFC que apresentaram problemas, aplicando algumas variações paramétricas para uma avaliação. Os resultados indicam que o módulo de deformabilidade do enrocamento é o parâmetro mais influente para a formação de esforços na laje e que os maiores esforços de compressão são observados região superior e central da laje com valores entre 58 e 98 MPa. Houve aumento de até 9% na referida compressão com a adição das forças de percolação, com um acréscimo de até 8 MPa. A abertura das juntas foi observada em todo o perímetro, com valores de até 12 cm. Os valores de compressão são muito superiores aos resistentes do concreto e a abertura das juntas tem comportamento diferente do que se imaginava para critérios convencionais de projeto, que reforça a recomendação de estudos tridimensionais BEFCs, principalmente as construídas em vales fechados. / The Concrete Face Rock Fill Dams (CFRD) are relatively inexpensive, has great flexibility construction and very secure in the long run in terms of stability and earthquakes. Improvements in design criteria and executive processes encourage higher constructions in closed valleys, that is, on less favorable terms. With advances in methods of numerical simulation applied to projects, are still reported cases of major disruptions in the sealing slab that were unforeseen and surprising consultants and specialists. From the cracks, assumptions are made that try to explain the phenomenon through results of three-dimensional simulations under construction in stages and simulations still consider interface between rockfill and concrete. This study is grounded in order to verify whether the percolation forces developed by the abutment formed with the filling of the reservoir, tend or not to compress the dam as a whole and contribute to the development of vertical crack in the concrete crushing upstream face of the embankment thus compromising its performance. The methodology for verification is based on three-dimensional seepage simulations that provide the forces from the water flow subsequently applied to the stress-strain simulations to evaluate its effect on the slab. The geometry and parameters of the simulated dam were based on CFRD arrangements that presented problems by applying some parametric variations for a more general evaluation, not sticking to a certain specific project. The simulation results indicate that the Young's modulus of the rockfill is the most influential parameter to the formation of stresses in the slab and the greatest compressive stress are observed upper and central slab with values between 58 and 98 MPa. There was an increase of up to 9% in said compression with the addition of seepage forces, with an increase of up to 8 MPa. The opening of the joints was observed around the perimeter, with values of up to 12 cm. The compression values are much higher than the resistance of the concrete and the opening of the joints have different behavior than previously thought for conventional design criteria, enhancing the importance of three-dimensional studies BEFCs, mostly built in enclosed valleys.
|
2 |
Simulação perfeita para redes com perdasMaric, Nevena 18 February 2002 (has links)
Orientador: Nancy Lopes Garcia / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-01T00:51:17Z (GMT). No. of bitstreams: 1
Maric_Nevena_M.pdf: 1723407 bytes, checksum: 2396c2fc7bf145acec91572d09894bee (MD5)
Previous issue date: 2002 / Resumo: O processo de redes com perdas é um processo espacial de nascimento e morte. Este processo modela, por exemplo, a ocorrência de chamadas numa rede telefônica. O processo possui uma única medida invariante e é ergódico desde que o processo de percolação orientada associado seja sub-crítico. Nós achamos uma condição suficiente para tal subcriticalidade. O algoritmo Backward-Forward (BFA) é uma das técnicas para simular perfeitamente. Este algoritmo é aplicável para qualquer medida que (1) seja absolutamente contínua com respeito a um processo pontual de Poisson e (2) possa ser obtida como uma medida invariante de um processo espacial de nascimento e morte. Neste trabalho, aplicamos o BFA a fim de obter uma amostra exata de medida invariante do processo de redes com perdas. As simulações servem também para obter informações adicionais sobre o processo e, além do mais nos levam a sugerir uma condição melhor para sub-criticalidade mencionada / Abstract: The loss network process is a spatia1 birth-and-death process. This process models, for exemp1e, the calls occurence in a te1ephone network. The process has a unique invariant measure and is ergodic as long as the associated oriented pereo1ation process is sub-critical. We found a sufficient condition for such sub-critica1ity. The Backward-Forward a1gorithm (BFA) is a perfect simu1ation scheme. The a1gorithm is applicab1e to any measure which (1) is abso1ute1y continuous with respect to a Poisson point process, and (2) can be obtained as the invariant measure of a spatia1 interacting birth-and-death process. ln this paper we app1y the BFA in order to obtain an exact samp1e from invariant measure of the loss network process. We a1so use the simu1ations to obtain some additona1 information about the process, and moreover they allow to suggest a better condition for the sub-criticality / Mestrado / Mestre em Estatística
|
3 |
Evoluções de Schramm-Loewner de sistemas fortemente anisotrópicos / Schramm-Loewner evolutions of strongly anisotropic systemsCredidio, Heitor Fernandes January 2016 (has links)
CREDIDIO, H. F. Evoluções de Schramm-Loewner de sistemas fortemente anisotrópicos. 2016. 96 f. Tese (Doutorado em Física) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016. / Submitted by Giordana Silva (giordana.nascimento@gmail.com) on 2016-09-26T19:58:16Z
No. of bitstreams: 1
2016_tes_hfcredidio.pdf: 14517410 bytes, checksum: a3503cf9dd48259018040980a67e79d3 (MD5) / Approved for entry into archive by Giordana Silva (giordana.nascimento@gmail.com) on 2016-09-26T19:58:45Z (GMT) No. of bitstreams: 1
2016_tes_hfcredidio.pdf: 14517410 bytes, checksum: a3503cf9dd48259018040980a67e79d3 (MD5) / Made available in DSpace on 2016-09-26T19:58:45Z (GMT). No. of bitstreams: 1
2016_tes_hfcredidio.pdf: 14517410 bytes, checksum: a3503cf9dd48259018040980a67e79d3 (MD5)
Previous issue date: 2016 / We disclose the origin of anisotropic percolation perimeters in terms of the Stochastic Loewner Evolution (SLE) process. Precisely, our results from extensive numerical simulations indicate that the perimeters of multi-layered and directed percolation clusters at criticality have as scaling limits the Loewner evolution of an anomalous Brownian motion, being superdiffusive and subdiffusive, respectively. The connection between anomalous diffusion and fractal anisotropy is further tested by using long-range power-law correlated time series (fractional Brownian motion) as driving functions in the evolution process. The fact that the resulting traces are distinctively anisotropic corroborates our hypothesis. Under the conceptual framework of SLE, our study therefore reveals new perspectives for mathematical and physical interpretations of non-Markovian processes in terms of anisotropic paths at criticality and vice-versa. / Usamos Evoluções de Schramm-Loewner (SLE) para expor a origem de interfaces anisotrópicas presentes em percolação. Mais precisamente, nossos resultados, obtidos através de extensas simulações numéricas, indicam que os perímetros de agregados encontrados em duas variantes do modelo de percolação têm como limite termodinâmico evoluções de Loewner dirigidas por movimentos Brownianos anômalos. Percolação em multi-camadas exibe comportamento superdifusivo e percolação direcionada subdifusivo. Testamos a conexão entre difusão anômala e anisotropia usando séries temporais com correlação de longo alcance em lei de potência (movimentos Brownianos fracionários) como funções diretoras nas SLE. Nossa hipótese é corroborada pelo fato de que os traços obtidos são distintamente anisotrópicos. Sob a estrutura conceitual das SLE, nosso estudo revela novas perspectivas para interpretações matemáticas e físicas de processos não-Markovianos em termos de caminhos anisotrópicos em criticalidade, e vice-versa.
|
4 |
Estudo de percolação de clusters de Monte Carlo para o modelo de Ising bidimensional /Wanzeller, Wanderson Gonçalves. January 2003 (has links)
Resumo: A teoria da percolação de clusters é empregada para estudar a transição de fase magnética no modelo de Ising bidimensional utilizando simulações de Monte Carlo. A teoria da percolação é de interesse para problemas de transições de fase em matéria condensada e em biologia e química. Mais recentemente, conceitos da teoria de percolação de clusters têm sido invocados em estudos da transição de desconfinamento dos quarks e glúons a altas temperaturas na Cromadinâmica quântica. A dissertação apresenta uma revisão sucinta, mas autocontida, dos princípios básicos da teoria da percolação e sua relação aos fenômenos críticos, e dos principais métodos de Monte Carlo. Alguns resultados obtidos não são novos, no entanto, todos códigos numéricos para as simulações e estimativas de erros são originais. / Abstracts: Cluster percolation theory is employed to study the magnetic phase transition in the two dimensional Ising model using Monte Carlo simulations. Percolation theory is of interest in problems of phase transitions in condensed matter physics, and in biology and chemistry. More recently, concepts of percolation theory have been invoked in studies of quark-gluon deconfinement at high temperatures in quantum Chromodynamics. The dissertation presents a brief, but selfcontained review of the basic principles of percolation theory, the relation of percolation to critical phenomena, and discusses the main Monte Carlo methods. Some of the results obtained are to new, but all numerical codes employed in the simulations and erro estimate are original. / Orientador: Gastão Inácio Krein / Coorientador: Tereza Cristina da Rocha Mendes / Banca: Carlos Eugenio Carneiro / Banca: Roberto André Kraenkel / Mestre
|
5 |
Cálculo exato do ponto crítico de modelos de aglomerados aleatórios (q ≥ 1) sobre a rede bidimensionalVila Gabriel, Roberto January 2013 (has links)
Dissertação(mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2013. / Submitted by Alaíde Gonçalves dos Santos (alaide@unb.br) on 2013-10-08T12:16:21Z
No. of bitstreams: 1
2013_RobertoVilaGabriel.pdf: 3245364 bytes, checksum: b4dd6dc2376cbbe449b55b6bcfd55654 (MD5) / Approved for entry into archive by Guimaraes Jacqueline(jacqueline.guimaraes@bce.unb.br) on 2013-10-16T14:03:06Z (GMT) No. of bitstreams: 1
2013_RobertoVilaGabriel.pdf: 3245364 bytes, checksum: b4dd6dc2376cbbe449b55b6bcfd55654 (MD5) / Made available in DSpace on 2013-10-16T14:03:06Z (GMT). No. of bitstreams: 1
2013_RobertoVilaGabriel.pdf: 3245364 bytes, checksum: b4dd6dc2376cbbe449b55b6bcfd55654 (MD5) / Este trabalho está baseado no artigo: The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1, escrito pelos matemáticos Vincent Beffara e Hugo Duminil-Copin publicado no periódico Probability Theory and Related Fields em 2012. Neste trabalho os autores provam uma conjectura bastante antiga sobre o valor do ponto crítico do Modelo de Aglomerados Aleatórios na rede Z2. Eles mostraram que o ponto auto-dual, psd(q) = √q /(1 + √q ); para q ≥ 1 é crítico na rede quadrada. Como uma aplicação deste resultado, eles mostraram também que as funções de conectividade, na fase subcrítica, decaem exponencialmente com respeito à distância entre dois pontos. _______________________________________________________________________________________ ABSTRACT / This work is based on the paper: The self-dual point of the two-dimensional randomcluster model is critical for, q ≥ 1, by Vincent Beffara and Hugo Duminil-Copin, Probability Theory and Related Fields 2012. In this work the authors proved an old conjecture about the critical point of the Random-Cluster Model in the square lattice. They shown that the self dual point,
psd(q) = √q /(1 + √q ); for q ≥ 1 is critical on the square lattice. As an application they shown that the connectivity functions, in the subcritical phase, decays exponentially fast with the distance of the points.
|
6 |
Propagação de epidemias em redes danificadas / Epidemic spreading on damaged networksCosta, Guilherme Henrique da Silva 22 February 2018 (has links)
Submitted by Marco Antônio de Ramos Chagas (mchagas@ufv.br) on 2018-09-13T17:11:28Z
No. of bitstreams: 1
texto completo.pdf: 2362432 bytes, checksum: b178db47eb7f33a8f9592f074db75e42 (MD5) / Made available in DSpace on 2018-09-13T17:11:28Z (GMT). No. of bitstreams: 1
texto completo.pdf: 2362432 bytes, checksum: b178db47eb7f33a8f9592f074db75e42 (MD5)
Previous issue date: 2018-02-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A sociedade moderna é altamente dependente de estruturas funcionais em rede, como redes de comunicação ou de transporte. Assim, o estudo de ataques em redes e o entendi- mento de sua robustez/fragilidade são fundamentais na procura de redes mais eficientes. Muitos estudos envolvendo ataques em redes subestimam a importância de processos di- nâmicos evoluindo nessas redes atacadas para prevenir danos futuros. A maioria dos estudos em redes atacadas foca na caracterização da estrutura das componentes não da- nificadas da rede. No entanto, muito menos atenção tem sido dedicada para analisar a influência desses ataques na propagação de epidemias ou informação. Nesse traba- lho, investigamos a propagação de epidemias nos modelos suscetível-infectado-suscetível e suscetível-infectado-recuperado em redes após os ataques com diferentes estratégias, enfa- tizando o estudo dos limiares epidêmicos dos modelos. Nós estudamos duas intensidades de ataques: um brando no qual a componente gigante da rede possui tamanho comparável a rede original e outro mais destrutivo mas ainda apresentando uma componente gigante grande. Ataques aleatórios, que não modificam a distribuição de grau de redes sem es- cala, não alteram o comportamento do limiar epidêmico em relação às redes intactas e continua indo para zero com o aumento do tamanho da rede. Investigamos outras duas estratégias de ataque de contatos: uma em que um primeiro vizinho de um vértice esco- lhido ao acaso é removido com probabilidade 1 e outra em que se remove o vizinho com uma probabilidade que protege os vértices de graus mais elevados de serem removidos. Observamos que a dependência do limiar epidêmico com o tamanho da rede se altera dra- maticamente, saturando em um valor constante no limite de redes grandes, ou diminuindo mais lentamente do que uma lei de potência ou até mesmo aumentando com o tamanho da rede em alguns casos, a depender da estratégia e da intensidade do ataque. Também concluímos que ambos ataques são mais efetivos quando aumentada a heterogeneidade da rede. Mostramos que mesmo os ataques de contato abaixo do limiar de percolação, que não fragmentam a rede, são capazes de tornar a rede inoperante para a propagação da epidemia no modelo SIS. Além disso, comparamos os resultados das simulações com a teoria de campo médio heterogêneo, conhecida como HMF (do inglês heterogeneous mean field), que leva em conta apenas o grau do vértice, e a teoria de campo médio que leva em conta toda a estrutura da rede por meio da matriz de adjacência, conhecida como QMF (do inglês quenched mean field) e observamos que a primeira captura as mudanças no limiar epidêmico com maior precisão do que a segunda. / The modern society is highly dependent of functioning networked structures such as com- munication and transportation networks. Thus, the study of attacks in networks and the understanding of their robustnesses/fragilities are imperative for the search of more efficient networks. Many studies involving network attacks underestimate the importance of dynamic processes evolving on these attacked networks to prevent further damage. Most of the studies on network attack is held on the characterization of the structure of the undamaged components of the networks. However, much less attention has been devoted to the influence of these attacks on the epidemic and information spreading. In this work, we investigate the epidemic spreading of susceptible-infected-susceptible and susceptible-infected-recovered models on networks after the attack according diffe- rent strategies aiming at the study of the epidemic thresholds. We investigate two attack intensities: a mild one with a giant component with size comparable to the original and other more destructive but still presenting a large giant component. Random attacks, which don’t alter the degree distribution on scale free networks, don’t change the epide- mic threshold behavior in relation to the undamaged network that goes to zero as the network size increases. We investigate other two acquaitance attack strategies: one where a nearest neighbor of a randomly chosen vertex is deleted with probability 1 and other that remove the neighbor with a probability that protect the vertices of higher degree from being deleted. We observe that the threshold scaling changes dramatically, reaching a constant value for the limit of large networks, or decreasing slower than a power law, or even increasing with the size of the network, depending on the model and intensity of the attacks. We also conclude that both attacks are more effective as the heterogeneity of the networks increases. We show that even acquaitance attacks below the percolation threshold, which are not sufficient to fragment the network, are able to make the network ineffective for the epidemic spreading in the SIS model. Furthermore, we compare the results from the simulations with the heterogeneous mean field (HMF) theory, which con- siders that the vertex degree is the only relevant quantity and the quenched mean field (QMF) theory, which include the whole structure of network through the adjacency ma- trix. We observed that the HMF theory captures the changes in the epidemic threshold more accurately than the QMF theory.
|
7 |
A fórmula de Russo e desigualdades de desacoplamento para entrelaçamentos aleatórios / Russo's formula and decoupling inequalities for random interlacementsBernardini, Diego Fernando de, 1986- 25 August 2018 (has links)
Orientador: Serguei Popov / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T10:22:43Z (GMT). No. of bitstreams: 1
Bernardini_DiegoFernandode_D.pdf: 1410086 bytes, checksum: b77a17aefd06d547f1c5db3c5cc1a8f7 (MD5)
Previous issue date: 2014 / Resumo: O modelo de entrelaçamentos aleatórios foi introduzido no sentido de se investigar originalmente o traço deixado por passeios aleatórios em grandes grafos e, basicamente, tal processo é descrito por um processo pontual de Poisson em um espaço de trajetórias duplamente infinitas de passeios aleatórios simples no reticulado d-dimensional, com dimensão d pelo menos igual a três. Neste sentido, o processo é caracterizado por um emaranhado aleatório de trajetórias deste tipo. Tal modelo possui ainda um parâmetro de intensidade, que controla, de certa forma, a quantidade de trajetórias que constituem o processo. Um problema relevante no contexto deste processo, e que tem sido amplamente estudado na literatura, diz respeito à caracterização da relação de dependência (através da covariância) entre os eventos denominados como crescentes neste modelo e suportados em subconjuntos disjuntos do reticulado, e é justamente este o problema no qual nos concentramos. Em uma primeira etapa neste trabalho, determinamos expressões explícitas para a derivada, com respeito ao parâmetro de intensidade, da probabilidade de um evento crescente e suportado em um subconjunto finito do reticulado, estabelecendo assim aquilo que denominamos como a fórmula de Russo para os entrelaçamentos aleatórios. A utilização desta denominação é justificada e motivada pelo amplamente conhecido termo original, que no contexto do modelo usual de percolação estabelece uma expressão para a derivada da probabilidade dos eventos definidos como crescentes naquele modelo. Em seguida, tentamos utilizar este resultado no sentido de estabelecer uma primeira abordagem para o problema da covariância entre os eventos crescentes, e esta investigação é baseada essencialmente em uma observação sobre o número esperado das trajetórias então denominadas como pivotais positivas para o evento de interesse. Por fim, estabelecemos uma nova abordagem para o mesmo problema, utilizando uma construção alternativa do processo de entrelaçamentos baseada na técnica dos soft local times, e investigando uma espécie de pivotalidade conjunta de coleções de excursões das trajetórias dos passeios aleatórios pelos conjuntos nos quais estão suportados os eventos de interesse. Justamente a partir desta abordagem obtemos nosso último resultado sobre a covariância. De forma geral, acreditamos que a investigação e a tentativa de obter uma caracterização cada vez mais precisa para a relação de dependência que mencionamos deve ajudar a entender o processo de entrelaçamentos e suas propriedades de forma cada vez mais clara / Abstract: The random interlacements model was originally introduced in order to investigate the trace left by random walks in large graphs and, basically, such process is described by a Poisson point process in a space of doubly infinite simple random walk trajectories in the d-dimensional lattice, with dimension d at least equal to three. In this sense, the process is characterized by a random tangle of trajectories of this kind. Such model also has an intensity parameter, which controls, in a certain sense, the quantity of trajectories that constitutes the process. A relevant issue in the context of this process, which has been largely studied in the literature, concerns the characterization of the dependence relation (through the covariance) between the so-called increasing events in this model, which are supported on disjoint subsets of the lattice, and this is precisely the issue on which we focus. In a first step in this work, we determine explicit expressions for the derivative, with respect to the intensity parameter, of the probability of an increasing event which is supported in a finite subset of the lattice, thus establishing what we call as Russo¿s formula for random interlacements. The use of this term is justified and motivated by the widely known original term, which, in the context of the usual percolation model, provides an expression for the derivative of the probability of events defined as increasing in that model. Then, we try to use this result to establish a first approach to the problem of the covariance between increasing events, and such investigation is essentially based in a fact about the expected number of the so-called positive pivotal (or plus pivotal) trajectories for the event of interest. Finally, we establish a new approach to the same problem by using an alternative construction of the interlacements process based on the technique of soft local times, and investigating a kind of joint "pivotality" of collections of excursions of the random walk trajectories, through the sets on which the events of interest are supported. From this approach we obtain our last result on the covariance. Overall, we believe that the investigation and the attempt to get an increasingly accurate characterization of the above mentioned dependence relation should help to understand the interlacements process and its properties in an increasingly clear way / Doutorado / Estatistica / Doutor em Estatística
|
8 |
Transição de fase para um modelo de percolação dirigida na árvore homogênea / Phase transition for a directed percolation model on homogeneous treesUtria Valdes, Jaime Antonio, 1988- 27 August 2018 (has links)
Orientador: Élcio Lebensztayn / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T03:09:48Z (GMT). No. of bitstreams: 1
UtriaValdes_JaimeAntonio_M.pdf: 525263 bytes, checksum: 3a980748a98761becf1b573639a361c1 (MD5)
Previous issue date: 2015 / Resumo: O Resumo poderá ser visualizado no texto completo da tese digital / Abstract: The Abstract is available with the full electronic digital document / Mestrado / Estatistica / Mestre em Estatística
|
Page generated in 0.1011 seconds