• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • Tagged with
  • 45
  • 45
  • 45
  • 21
  • 18
  • 18
  • 15
  • 12
  • 12
  • 12
  • 12
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Estudo de superficies metálicas utilizando MEIS : a importância da forma de linha

Silva Junior, Agenor Hentz da January 2007 (has links)
Espalhamento de íons com energia média (MEIS), em conjunto com as técnicas de sombreamento e bloqueio, representa um poderoso método para a determinação de parâmetros estruturais e vibracionais de superfícies cristalinas. Esta determinação é realizada pela comparação do rendimento de íons detectados em função do Ângulo de espalhamento, as chamadas curvas de bloqueio, com simulaçõe computacionais. Em geral, um número grande de estruturas-tentativa é utilizada e a melhor concordância entre resultados experimentais e teóricos encontrada é considerada a estrutura real. Apesar do imenso sucesso, este tipo de abordagem na determinação da superfície não é únivoco em determinados sistemas. Além disso, as formas do espectro de perda de energia iônica não são, normalmente, analisadas pois requerem um conhecimento profundo dos mecanismos de transferência de energia. A probabilidade de excitação/ionização para cada camada interna em uma colisão única representa um aspecto importante. Neste trabalho, cálculos por Canais Acoplados são usados para o descrever os mecanismos de transferência de energia em conjunto com a simulação Monte Carlo das trajetórias iônicas no interior do cristal. Este método possibilita a simulação da distribuição de perda de energia do pico de superfície para diversos sistemas físicos. Primeiramente, foi realizado estudo com deposição de Y e a formação do siliceto bidimensional Si(111)(1×1)-Y para diversas preparações da superfície e diferentes ângulos de espalhamento. Os resultados mostraram que existem contribuições para o espectro em energia referentes á rugosidade e não homogeneidade da superfície. Entretanto, para incidência e detecção do feixe de íons quase-normais á superfície da amostra, a concordância entre os espectros em energia simulados e experimentais é satisfatória. Posteriormente, foi realizado um estudo com a deposição de fração de monocamada de metais alcalinos (K, Rb e Cs) sobre Al(111). A perda de energia, neste caso, pode ser completamente atribuída a colisões atômicas únicas nos metais alcalinos. Os espectros de energia experimentais referentes a Rb e Cs apresentam notável assimetria em relação ao K, fenômeno este atribuído ás excitaçõesde elétrons 3d e 4d, respectivamente, e a múltiplas ionizações destes estados. Houve excelente concordância entre teoria e experimento referente aos espalhamentos por Rb e Cs. Com relação ao K, ocorreu discrepÂncia na região de baixa energia do espectro, resultante de problemas com a preparação da amostra. Finalmente, tanto o espectro em energia quanto as curvas de bloqueio referentes á medidas na superfície limpa de Cu(111) foram simulados e comparados com resultados experimentais. A determinação da superfície através do método “clássico” mostrou que alguns conjuntos de parâmetros estruturais e vibracionais podem resultar em curvas de bloqueio idênticas. Por outro lado, a simulação dos espectros em energia, não apresentou estes problemas, o que sugere fortemente a necessidade de um modelo com correlação (ƒcorr = 0,4). Este resultado mostra que a simulação do espectro em energia pode ser utilizado em conjunto com a simulação das curvas de bloqueio de forma a servir de ferramenta auxiliar na determinação de parâmetros estruturais e vibracionais de superfícies. / Medium-energy ion scattering (MEIS) in connection with shadowing and blocking techniques is a powerful method for the determination of structural and vibrational parameters of crystalline surfaces. This determination has been done by comparing the yield of detected ions as function of scattering angle, the so-called blocking curves, between experimental data with computational simulations. In general, a large set of guess-structures has to be simulated, and the best fit is regarded as the real structure. Besides its enourmous success, this kind of approach for surface determination may give rise to non-unique structures for some physical systems. Moreover, the shape of ion energy-loss spectrum is usually not fully analyzed, because this requires an improved knowledge on the energy-transfer mechanisms. The differential excitation/ ionization probability for each subshell in a single collision is the important quantity. In the present work, Coupled Channels calculations are used to describe energy-transfer mechanisms in connection with Monte Carlo simulations for the ionic trajectories inside the crystal. This method describes reliable energy-loss distribution for the surface peak of several physical systems. Firstly, the study of Y overlayers and Si(111)(1×1) two-dimensional silicide phase formed by Y on this surface, in various scattering geometries and with different surface preparations was performed. The experimental results indicate that additional broadening contributions arise from surface inhomogeneity and roughness, but for near-normal incident and outgoing trajectories the theory and experiment agree satisfactory. Subsequently, the study of alkali-metals (K, Rb and Cs) adsorbed onto Al(111) surface was done. The energy losses can be attributed entirely to single atomic collisions from the alkali atoms, and the experiments reproduce the markedly increased asymmetry in scattering from Rb and Cs relative to K, attributable largely to the role of 3d and 4d excitations, respectively, and particularly the role of multiple excitations of these states. For Rb and Cs scattering, the data show excellent quantitative agreement between theory and experiment. In the case of K scattering, a discrepancy of a low-energy shoulder is attributed to a problem associated with the sample preparation. At last, both energy loss spectrum and blocking curves related to clean Cu(111) measurements were simulated and compared to experimental results. The surface determination through the “classical” method showed that a set of different structural and vibrational parameters can result in nearly identical simulated blocking curves. On the other hand, the energy loss spectrum simulation, which did not present this behaviour, strongly suggests the adoption of a correlated surface model (ƒcorr = 0,4). This result shows that the energy loss spectra simulation can be used in connection with the blocking curve simulation as an important tool in performing structural and vibrational surface determination.
12

Medida da perda de energia de moléculas da hidrogênio através da técnica MEIS

Shubeita, Samir de Morais January 2006 (has links)
O estudo da interação de íons moleculares com a matéria tem sido alvo de diversos trabalhos, tanto teóricos quanto experimentais, ao longo das últimas décadas. Comparativamente ao que ocorre com íons monoatômicos, os fenômenos envolvendo íons moleculares são mais complexos e não tão bem compreendidos. No estudo da perda de energia, observam-se efeitos moleculares que não ocorrem com íons monoatômicos. Além da força de freamento, a perturbação que cada constituinte da molécula incidente provoca nos elétrons do meio durante seu deslocamento afeta os demais componentes da molécula original, fazendo com que estes experimentem uma força extra. Este fenômeno é conhecido como efeito de interferência ou vizinhança, e sua magnitude é considerável apenas nos instantes iniciais da molécula dentro do alvo, enquanto os constituintes ainda estiverem correlacionados. A influência deste efeito sobre os íons incidentes pode ser verificada através da interação de íons moleculares com camadas muito finas de um determinado alvo. Outro fenômeno observado na interação de íons moleculares com a matéria é a chamada explosão coulombiana, decorrente da força de repulsão que causa o progressivo afastamento entre si dos constituintes da molécula após a perda de seus elétrons nas primeiras camadas do material. Com base nestas considerações, este trabalho se propõe a avaliar a perda de energia eletrônica de feixes de H2+ e H3+ relativamente a feixes monoatômicos (H+), incidentes sobre filmes ultrafinos de SiO2 (10-25 Å), crescidos sobre um substrato de Si cristalino. Para tanto, utilizamos a técnica MEIS (Medium Energy Ion Scattering) que permite a obtenção de espectros de energia/profundidade destas camadas ultrafinas com alta resolução. Com o auxílio de um software desenvolvido para a análise de espectros provenientes de experimentos com a técnica MEIS, determinamos os fatores de perda de energia eletrônica de íons H2+ e H3+ com relação a íons H+, juntamente com uma análise do straggling de energia para estes diferentes íons. Os experimentos foram realizados como função das energias das partículas incidentes, cobrindo uma faixa de energias entre 40 e 150 keV/uma para íons H3+ e entre 40 e 200 keV/uma para íons H2+. Os resultados mostram que a razão entre a perda de energia da molécula e a soma da perda de energia de seus constituintes é cerca de 0.85 para ambos H2+ e H3+ em energias abaixo de 80 keV/uma. Para as energias mais altas (acima de 120 keV/uma), esta razão atinge aproximadamente 1.2 e 1.5 para H2+ e H3+ respectivamente. A região de transição ocorre entre 80 e 100 keV/uma, onde uma abrupta variação das razões das perdas de energia é observada. Uma interpretação desses resultados em termos do formalismo dielétrico mostrou-se adequada somente para energias acima de 100 keV/uma. Para mais baixas energias, efeitos não-lineares estão presentes e o formalismo dielétrico tende a superestimar os resultados experimentais. Além disso, tais cálculos mostraram a importância da inclusão de excitações de plasmon na região acima de 100 keV/uma. / The study of molecular ions interacting with matter has been the subject of an intense theoretical and experimental activity in the last decades. In comparison to what occurs with monoatomic ions, the phenomena involving molecular ions are more complex and not so well understood. Indeed, effects that have been observed in the study of the energy loss of molecules in solids do not occur with monoatomic ions. In addition to the stopping force, there is the perturbation that each constituent of the impinging molecule induces in the electrons of the target, which affects the trailing components of the original molecule, exerting an additional force upon them. This phenomenon is known as interference or vicinage effect, and its magnitude is considerable only during the initial stages of the molecule inside the target while its constituents remain correlated. The influence of this effect over the impinging ions can be verified through the interaction of molecular ions with very thin layers of particular targets. Another phenomena observed in the interaction of molecular ions with matter is the so-called Coulomb explosion, generated by the repulsion force that causes the progressive separation of the molecular constituents inside the target after the loss of their electrons. Based on these considerations, this work aims to evaluate the electronic energy loss of H2+ and H3+ beams in comparison to monoatomic beams (H+), impinging over ultra-thin films of SiO2 (10-25 Å) grown over Si crystalline substrates. To that end, we employ the MEIS (Medium Energy Ion Scattering) technique, which provides energy/depth spectra of these ultra-thin layers with high energy resolution. With the support of a software developed for the analysis of experimental spectra obtained via MEIS technique, we were able to determine the electronic energy loss factors of H2+ and H3+ ions, together with a analysis of the energy straggling for these ions. The experiments were carried out as functions of the incident particle energies, covering a range between 40 and 150 keV/amu for H3+ ions and between 40 and 200 keV/amu for H2+ ions. The results show that the ratio between the molecule energy loss and the sum of the energy loss of its constituents is about 0.85 for both H2+ and H3+ ions at energies below 80 keV/amu. For energies above 120 keV/amu, this ratio reaches approximately 1.2 and 1.5 for H2+ and H3+ respectively. A sudden change in these ratios is observed for both molecules in the energy region between 80 and 100 keV/amu. The ratios obtained at higher energies are well described by calculations carried out in the framework of the dielectric formalism. At lower energies, non-linear effects come into play and such calculations tend to overestimate the experimental results. Finally, a comparison between these calculations and the experimental results at higher energies show the importance of plasmon excitations in this energy regime.
13

Estudo de superficies metálicas utilizando MEIS : a importância da forma de linha

Silva Junior, Agenor Hentz da January 2007 (has links)
Espalhamento de íons com energia média (MEIS), em conjunto com as técnicas de sombreamento e bloqueio, representa um poderoso método para a determinação de parâmetros estruturais e vibracionais de superfícies cristalinas. Esta determinação é realizada pela comparação do rendimento de íons detectados em função do Ângulo de espalhamento, as chamadas curvas de bloqueio, com simulaçõe computacionais. Em geral, um número grande de estruturas-tentativa é utilizada e a melhor concordância entre resultados experimentais e teóricos encontrada é considerada a estrutura real. Apesar do imenso sucesso, este tipo de abordagem na determinação da superfície não é únivoco em determinados sistemas. Além disso, as formas do espectro de perda de energia iônica não são, normalmente, analisadas pois requerem um conhecimento profundo dos mecanismos de transferência de energia. A probabilidade de excitação/ionização para cada camada interna em uma colisão única representa um aspecto importante. Neste trabalho, cálculos por Canais Acoplados são usados para o descrever os mecanismos de transferência de energia em conjunto com a simulação Monte Carlo das trajetórias iônicas no interior do cristal. Este método possibilita a simulação da distribuição de perda de energia do pico de superfície para diversos sistemas físicos. Primeiramente, foi realizado estudo com deposição de Y e a formação do siliceto bidimensional Si(111)(1×1)-Y para diversas preparações da superfície e diferentes ângulos de espalhamento. Os resultados mostraram que existem contribuições para o espectro em energia referentes á rugosidade e não homogeneidade da superfície. Entretanto, para incidência e detecção do feixe de íons quase-normais á superfície da amostra, a concordância entre os espectros em energia simulados e experimentais é satisfatória. Posteriormente, foi realizado um estudo com a deposição de fração de monocamada de metais alcalinos (K, Rb e Cs) sobre Al(111). A perda de energia, neste caso, pode ser completamente atribuída a colisões atômicas únicas nos metais alcalinos. Os espectros de energia experimentais referentes a Rb e Cs apresentam notável assimetria em relação ao K, fenômeno este atribuído ás excitaçõesde elétrons 3d e 4d, respectivamente, e a múltiplas ionizações destes estados. Houve excelente concordância entre teoria e experimento referente aos espalhamentos por Rb e Cs. Com relação ao K, ocorreu discrepÂncia na região de baixa energia do espectro, resultante de problemas com a preparação da amostra. Finalmente, tanto o espectro em energia quanto as curvas de bloqueio referentes á medidas na superfície limpa de Cu(111) foram simulados e comparados com resultados experimentais. A determinação da superfície através do método “clássico” mostrou que alguns conjuntos de parâmetros estruturais e vibracionais podem resultar em curvas de bloqueio idênticas. Por outro lado, a simulação dos espectros em energia, não apresentou estes problemas, o que sugere fortemente a necessidade de um modelo com correlação (ƒcorr = 0,4). Este resultado mostra que a simulação do espectro em energia pode ser utilizado em conjunto com a simulação das curvas de bloqueio de forma a servir de ferramenta auxiliar na determinação de parâmetros estruturais e vibracionais de superfícies. / Medium-energy ion scattering (MEIS) in connection with shadowing and blocking techniques is a powerful method for the determination of structural and vibrational parameters of crystalline surfaces. This determination has been done by comparing the yield of detected ions as function of scattering angle, the so-called blocking curves, between experimental data with computational simulations. In general, a large set of guess-structures has to be simulated, and the best fit is regarded as the real structure. Besides its enourmous success, this kind of approach for surface determination may give rise to non-unique structures for some physical systems. Moreover, the shape of ion energy-loss spectrum is usually not fully analyzed, because this requires an improved knowledge on the energy-transfer mechanisms. The differential excitation/ ionization probability for each subshell in a single collision is the important quantity. In the present work, Coupled Channels calculations are used to describe energy-transfer mechanisms in connection with Monte Carlo simulations for the ionic trajectories inside the crystal. This method describes reliable energy-loss distribution for the surface peak of several physical systems. Firstly, the study of Y overlayers and Si(111)(1×1) two-dimensional silicide phase formed by Y on this surface, in various scattering geometries and with different surface preparations was performed. The experimental results indicate that additional broadening contributions arise from surface inhomogeneity and roughness, but for near-normal incident and outgoing trajectories the theory and experiment agree satisfactory. Subsequently, the study of alkali-metals (K, Rb and Cs) adsorbed onto Al(111) surface was done. The energy losses can be attributed entirely to single atomic collisions from the alkali atoms, and the experiments reproduce the markedly increased asymmetry in scattering from Rb and Cs relative to K, attributable largely to the role of 3d and 4d excitations, respectively, and particularly the role of multiple excitations of these states. For Rb and Cs scattering, the data show excellent quantitative agreement between theory and experiment. In the case of K scattering, a discrepancy of a low-energy shoulder is attributed to a problem associated with the sample preparation. At last, both energy loss spectrum and blocking curves related to clean Cu(111) measurements were simulated and compared to experimental results. The surface determination through the “classical” method showed that a set of different structural and vibrational parameters can result in nearly identical simulated blocking curves. On the other hand, the energy loss spectrum simulation, which did not present this behaviour, strongly suggests the adoption of a correlated surface model (ƒcorr = 0,4). This result shows that the energy loss spectra simulation can be used in connection with the blocking curve simulation as an important tool in performing structural and vibrational surface determination.
14

Perda de energia e fragmentação de íons moleculares em cristais

Fadanelli Filho, Raul Carlos January 2005 (has links)
Os fenômenos decorrentes da interação entre íons monoatômicos e a matéria têm sido amplamente estudados há décadas. No entanto, um esforço comparativamente menor tem sido despendido no estudo dos fenômenos decorrentes da interação entre feixes moleculares e a matéria, especialmente quando o alvo do feixe é um sólido cristalino. Tais fenômenos, como a transferência de energia entre o feixe e a matéria, a emissão de raios X induzidos pelos feixes e a geração de produtos de reação nuclear sofrem importantes modificações no caso de feixes moleculares. Essas alterações estão longe de ser explicadas por uma simples soma dos efeitos causados pelos componentes individuais do aglomerado iônico. Em particular, no caso de interação com sólidos cristalinos, a fragmentação dos aglomerados causada pela explosão coulombiana causa importantes efeitos sobre o fluxo de íons ao longo do sólido. Finalmente, efeitos de vizinhança entre os componentes do aglomerado alteram sensivelmente o valor da energia transferida entre este e o sólido. Na descrição desses fenômenos, empregou-se, neste trabalho, de um lado, a construção de um modelo teórico para a perda de energia de aglomerados e, de outro, técnicas experimentais envolvendo contagens de retroespalhamento, indução de raios X pelo feixe de íons e geração de produtos de reação nuclear por feixes de H+, H2 + e H3 + em Si e SIMOX. Como elo entre teoria e experimento, empregaram-se simulações que descrevem a interação entre os íons moleculares e o alvo. Pela primeira vez, alterações de fluxo de íons causadas pela explosão coulombiana foram quantificadas, valores de perda de energia foram obtidos e, finalmente, uma nova expressão simplificada para a transferência de energia foi obtida. / Ion induced phenomena in matter have been studied for many decades. However, a comparatively minor effort was done in the subject of the interaction of molecular ions with the matter, especially for crystalline solid targets. Such phenomena, for instance, the energy transfer between ions and matter, the ion beam induced X ray emission and the nuclear reaction yield undergo important modifications under molecular ion bombardment. These modifications cannot be explained by the sum of effects induced by each ion component of the ionic cluster. Moreover, for the interaction between the cluster beam and crystalline solids, the cluster breakup induced by the Coulomb explosion leads to important effects in the ion flux distribution along the solid. Finally, vicinage effects among the cluster components change the energy transfer between this cluster and the solid. In order to describe those phenomena in this work, we have used, firstly, coupledchannel calculations to describe the cluster energy transfer, and developed a simple energy loss model. Secondly, backscattering, particle induced X ray emission and nuclear reaction analysis experiments have been measured for H+, H2 + and H3 + beams in Si and SIMOX targets. As a link between theory and experiments, we have performed computer simulations to describe the full interaction between the molecular ions and the target atoms. For the first time, cluster ion flux changes induced by the Coulomb explosion were quantified and, finally, a new simple expression for the cluster energy transfer was developed.
15

Caracterização de nanoestruturas através da técnica MEIS

Sortica, Maurício de Albuquerque January 2009 (has links)
Espalhamento de íons de energia intermediária (MEIS) é uma técnica analítica de feixe de íons que pode determinar quantitativamente composições elbmentares e perfis I de profundidade com resolução subnanométrica. Dessa maneira, MEIS pode ser uma poderosa ferramenta para caracterização de nanopartículas, em partichlar das suas composições internas, o que é dificilmente obtido por qualquer outra técn~ca analítica. Para esse propósito, foi desenvolvido uma simulação Monte Cado de espec~ros de MEIS que considera qualquer geometria e distribuição de tamanhos das nanoestfuturas. Esse método também considera a assimetria da distribuição da perda de ene~gia devido a uma única colisão violenta, como a que ocorre no evento de retroespalhaménto. Usando esse método, estudamos a influência da geometria das nanopartículas, den~idade superficial, distribuição de tamanhos e forma de linha da perda de energia nos espectros 2D (energia) I e 3D (energia e ângulo) de MEIS. Os principais resultados desse estudo podem ser resumidos como segre: i) observamos que a influência da distribuição da perda de energia no espectro de MEIS é significativa apenas para nanoestruturas pequenas (diâmetro < 10 nm) mas a especificação da geometria correta das estruturas é significativa para todos os tamanhos; ii) negligenciar a assimetria da perda de energia devido à colisão de retroespalhamento pode resultar na interpretação de uma falsa distribuição de tamanhos para nanopartículas pequenas; iii) simulações para um exemplo hipotético de pequenas nanopartículas esféricas de ZnSe mostram que a técnica MEIS é capaz de realizar perfil de profundidade dentro das nano- I estruturas. Finalmente, medimos uma amostra de nanopartículas de ouro, adsqrvidas sobre um filme multicamadas de polieletrólitos fracos, a fim de obter a geometri e a distribuição de nanopartículas de ouro por MEIS. Os resultados concordam muito bem com a imagem obtida por microscopia eletrônica de transmissão (TEM). Além disso, niostramos que os espectros de MEIS não podem ser ajustados supondo um filme de ouro padrão. / Medium energy ion scattering (MEIS) is an ion-beam analytical te~hnique which can quantitatively determine elemental compositions and depth profiles w~th subnanometric depth resolution. In this way, MEIS can be a powerful tool for characterization of nanoparticles, in particular of their inner composition, which is hardly achieved by any other analytical technique. For this purpose a Monte Carlo simulation of MEIS spectra that considers any geometry and size distribution of the nanostructures walsdeveloped. This method also considers the asymmetry of the energy-loss distribution due\to a single violent collision such as the backscattering evento Using this method we studied the influence of I the geometry of the nanoparticles, superficial density, size distribution a'ildthe energy-loss line-shape on the 2D (energy) and 3D (energy and angle) MEIS spectra. The main results of the present investigation can be summarized :as follows: i) we observed that the influence of energy-loss distribution on the MEIS sp~ectrumis significant only for smalI nanoparticles (diameter < 10 nm) but use of the actual nanoparticle geometry is significant for alI sizes of nanostructures; ii) neglecting the asymmetry of the energy-loss due to the backscattering colIision may be misinterpreted as a false size distribution for smalI nanoparticles; iii) simulations for a hypothetical example of smalI spherical ZnSe nanoparticles show that the MEIS technique is capable to perform depth profile inside the nanostructures. FinalIy we have measured a sample of gold nanoparticles adsorbed op a multilayered film of weak polyeletrolites in arder to obtain the shape and the size distribution of gold nanoparticles by MEIS. The results agree quite welI with the image obtained by transmission electron microscopy (TEM). Furthermore we show that the MEIS spectra cannot be fitted by assuming a standard Au film.
16

Análise de materiais nanoestruturados utilizando feixes de íons

Pezzi, Rafael Peretti January 2009 (has links)
A miniaturização de dispositivos tecnológicos levou à percepção de novas classes de efeitos devidos ao con namento quântico e à mudança na proporção entre número de átomos presentes na superfície e no volume de estruturas que atingem a escala nanométrica, levando à noção de nanociência e nanotecnologia. Dentre os desa os impostos por essas áreas emergentes encontram-se os desa os para os métodos analíticos, em particular para os métodos baseados em feixes de íons, que tiveram um papel fundamental na tecnologia do silício. O uso de feixes de íons para a caracterização de nanoestruturas não é muito difundido devido a limitações na resolução espacial e no dano causado pelos íons energéticos incidentes nas nanoestruturas. Nesta tese é apresentado o estado da arte das aplicações da análise por feixes de íons na nanotecnologia e são descritos avanços direcionados à adoção de métodos analíticos de feixes de íons para as nanociências. Serão abordados os principais métodos de per lometria com alta resolução em profundidade, em especí co a per lometria utilizando reações nucleares com ressonâncias estreitas em suas curvas de seção de choque (RNRA, do inglês Resonant Nuclear Reaction Analysis ) e espalhamento de íons de energias intermediárias (MEIS do inglês Medium Energy Ion Scattering ). Uma vez que os modelos convencionais, baseados em uma aproximação Gaussiana, não são adequados para descrever o espectro de espalhamento de íons correspondente a estruturas nanométricas, neste trabalho foram desenvolvidos modelos que descrevem adequadamente os processos de perda de energia dos íons na matéria, viabilizando a adoção sistemática de espalhamento de íons de energias intermediárias para a análise de nanoestruturas. Aplica ções recentes de RNRA e MEIS para eletrodos de porta metálicos e dielétricos com alta constante dielétrica sendo incorporados à tecnologia MOSFET atual são apresentadas como avaliação dos métodos. / Device miniaturization revealed a new class of e ects due to quantum con nement and a di erent ration between the number of surface and bulk atoms as compared to macroscopic structures, giving rise to nanoscience and nanotechnology. Among the challenges imposed by these emerging areas are those related to the analytical techniques for material science, especially for ion beam analysis techniques (IBA). These techniques played a key role in the development of silicon technology. However, ion beam analysis is not of widespread use for nanostructure characterization due to limitation on the spatial resolution and also the damage caused by the energetic impinging ions at the target nanostructures. This thesis present state of the art applications of ion beam analysis for nanotechnology, describing advanced aimed at a more systematic use of analytical techniques based on ion beams for nanosciences. Detailed description of resonant nuclear reaction analysis (RNRA) medium energy ion scattering (MEIS) are presented, followed by the development of advanced ion energy loss models for high resolution depth pro ling using MEIS. The evaluation of RNRA e MEIS are presented based on recent applications for metal gates and high-k gate dielectrics of latest generation Metal-Oxide-Semiconductor Field-E ect Transistor (MOSFET) devices.
17

Medidas do poder de freamento de íons de He e Li em filmes de Zn

Duarte, Patricia Fernanda January 2003 (has links)
Neste trabalho, medimos a perda de energia de íons de He e Li em Zn, com energias que vão de 400 keV a 7 MeV, no primeiro caso, e de 300 keV a 5 MeV, no segundo. Usamos a técnica de retroespalhamento de Rutherford com amostras do tipo Au(100Å)\Zn\Au(100Å)\Si, com camadas de Zn de espessuras de 460 Å, 750 Å e 1500 Å. Sendo o Zn o metal de transição com o maior deslocamento de energia entre as camadas 4s e 3d, ele é o alvo ideal para estudar a relação entre o poder de freamento e a velocidade do íon a baixas energias. Para ambos os tipos de projétil consegue-se observar a relação de proporcionalidade entre a perda de energia e a velocidade do íon incidente, como previstos pelas teorias existentes. Por outro lado, encontrou-se que, para íons de He incidindo a baixas energias (E < 800keV) em Zn, a curva do poder de freamento está em perfeito acordo com os resultados obtidos utilizando o método de transmissão por N. Arista et al. Para altas energias (E > 800keV), os resultados estão em bom acordo com o cálculo feito pela subrotina RSTOP do programa Transport of Ions in Matter (TRIM). No caso dos íons de Li, as medições de perda de energia foram realizadas num alvo de Zn pela primeira vez. Esses resultados se mostraram em bom acordo com a previsão da subrotina RSTOP de Ziegler te al e com a fórmula universal de Kalbitzer. Esse acordo ocorre para todo o intervalo de energia estudado. / In this work, we present results on the stopping power of He and Li in Zn in the 0.4-7 MeV energy range He and in the 0.3-5 MeV for Li. We have used the Rutherford backscattering technique (RBS) with Au (100 Å)/Zn/Au (100 Å) films with Zn slabs of 460, 750, 1500 Å width. Since Zn is the transition metal with the larger energy gap between the 4s and 3d sub shells, it is the ideal candidate for studying the relationship between the stopping power and the ion velocity (at lower energies). In both cases it was possible to observe the direct proportionality between both quantities as anticipated by current theories. On the other hand, we found that, for lower energies (E < 800 keV), the stopping power measured in our laboratory is in perfect agreement with similar measurements performed using the transmission technique by N. Arista et al. For higher energies (E > 800 keV) the He results are in fair agreement with the RSTOP predictions. For the Li case, the stopping power measurements were the first ones done on a Zn target. The results are in good agreement with the RSTOP predictions as well as with the universal function by Kalbitzer et al. This is valid for all the measured energy range.
18

Análise de materiais nanoestruturados utilizando feixes de íons

Pezzi, Rafael Peretti January 2009 (has links)
A miniaturização de dispositivos tecnológicos levou à percepção de novas classes de efeitos devidos ao con namento quântico e à mudança na proporção entre número de átomos presentes na superfície e no volume de estruturas que atingem a escala nanométrica, levando à noção de nanociência e nanotecnologia. Dentre os desa os impostos por essas áreas emergentes encontram-se os desa os para os métodos analíticos, em particular para os métodos baseados em feixes de íons, que tiveram um papel fundamental na tecnologia do silício. O uso de feixes de íons para a caracterização de nanoestruturas não é muito difundido devido a limitações na resolução espacial e no dano causado pelos íons energéticos incidentes nas nanoestruturas. Nesta tese é apresentado o estado da arte das aplicações da análise por feixes de íons na nanotecnologia e são descritos avanços direcionados à adoção de métodos analíticos de feixes de íons para as nanociências. Serão abordados os principais métodos de per lometria com alta resolução em profundidade, em especí co a per lometria utilizando reações nucleares com ressonâncias estreitas em suas curvas de seção de choque (RNRA, do inglês Resonant Nuclear Reaction Analysis ) e espalhamento de íons de energias intermediárias (MEIS do inglês Medium Energy Ion Scattering ). Uma vez que os modelos convencionais, baseados em uma aproximação Gaussiana, não são adequados para descrever o espectro de espalhamento de íons correspondente a estruturas nanométricas, neste trabalho foram desenvolvidos modelos que descrevem adequadamente os processos de perda de energia dos íons na matéria, viabilizando a adoção sistemática de espalhamento de íons de energias intermediárias para a análise de nanoestruturas. Aplica ções recentes de RNRA e MEIS para eletrodos de porta metálicos e dielétricos com alta constante dielétrica sendo incorporados à tecnologia MOSFET atual são apresentadas como avaliação dos métodos. / Device miniaturization revealed a new class of e ects due to quantum con nement and a di erent ration between the number of surface and bulk atoms as compared to macroscopic structures, giving rise to nanoscience and nanotechnology. Among the challenges imposed by these emerging areas are those related to the analytical techniques for material science, especially for ion beam analysis techniques (IBA). These techniques played a key role in the development of silicon technology. However, ion beam analysis is not of widespread use for nanostructure characterization due to limitation on the spatial resolution and also the damage caused by the energetic impinging ions at the target nanostructures. This thesis present state of the art applications of ion beam analysis for nanotechnology, describing advanced aimed at a more systematic use of analytical techniques based on ion beams for nanosciences. Detailed description of resonant nuclear reaction analysis (RNRA) medium energy ion scattering (MEIS) are presented, followed by the development of advanced ion energy loss models for high resolution depth pro ling using MEIS. The evaluation of RNRA e MEIS are presented based on recent applications for metal gates and high-k gate dielectrics of latest generation Metal-Oxide-Semiconductor Field-E ect Transistor (MOSFET) devices.
19

Efeitos de espalhamentos múltiplos na análise de materiais nanoestruturados via MEIS

Marmitt, Gabriel Guterres January 2013 (has links)
A síntese de sistemas nanoestruturados bidimensionais enterrados em matrizes sólidas têm atraído interesse em associação, por exemplo, com aplicações plasmônicas e magnéticas. Para ambas, as propriedades dos sistemas de nano-partículas (NPs) são fortemente dependentes em seus tamanhos, formas, densidade areal e ordem espacial do conjunto de NP. Espalhamento de íons de energia intermediaria (MEIS) é uma técnica de feixe de íons, que possui grande potencial na investigação de tais sistemas através do uso do software PowerMEIS. Este considera qualquer geometria, distribuição de tamanhos, composição e densidade das nanoestruturas. Porém, efeitos de Espalhamento Múltiplo (EM) e Espalhamento Plural (EP) não haviam ainda sido considerados em trabalhos anteriores. Estes efeitos podem ser importantes na análise de sistemas compostos por NPs enterradas e também para análises de MEIS com uso de íons mais pesados que He+, além de medidas a baixas energias. Para tal, um estudo do efeito de EM e EP em espectros de MEIS foi realizado, salientando-se a diferença dos dois processos de espalhamento. Neste trabalho, um algoritmo Monte Carlo para a simulação da perda de energia dos íons devido à efeitos de EM e EP foi incluído no software de simulação PowerMEIS. Os resultados mostram uma contribuição de efeitos de EM no caso de análises de sistemas 2D de NPs de Pb, entre 44 e 61 nm distantes da superfície, medidos por MEIS com íons de He+ com energias de 100 keV. A determinação do tamanho das NPs pela análise de MEIS foi afetada pela inclusão dos efeitos de EM, alcançando um valor mais próximo ao obtido por Microscopia de Transmissão de Elétrons (TEM). Simulações de EP de espectros de MEIS utilizando íons de He+ com 98,3 KeV sobre um filme de 12 nm de Pt depositado sobre substrato de Si exemplificam amostras onde os processos de EP possuem forte influência no espectro obtido. / The synthesis of 2-dimensional nanostructured systems buried into a solid matrix has attracted interest in connection e.g. with plasmonic or magnetic applications. For both, the properties of the nanoparticle (NP) system are strongly dependent on the size, shape, areal number density and spatial order of the NP set. Medium energy ion scattering (MEIS) is an ion beam characterization technique, which has great potentiality to investigate such kind of systems through the use of PowerMEIS software. Who considers any geometry, size distribution, composition and density of the nanostructures. However, Multiple Scattering (MS) and Plural Scattering (PS) effects have not been taken into account. These effects can be important for the analysis of systems composed by buried NPs and also for MEIS analysis using ions heavier than He+, measured at lower energies. For such, a study about the MS and PS effects in MEIS spectra was executed, stressing the difference between both scattering process. In this work, a Monte Carlo algorithm for the ion energy loss simulation due to MS and PS effects was included in the PowerMEIS simulation software. The results show a contribution of MS effects in case of the analysis of a 2D array of Pb NPs, distant from the surface between 44 and 61 nm, using 100 keV He + ions. The size determination of the NPs by the MEIS analysis was affected by the inclusion of MS effects, achieving a value closer to that obtained by Transmission Electron Microscopy (TEM). Simulations of PS effects in MEIS spectra, from 98,3 keV He+ on 12 nm Pt film deposited on Si substrate, ilustrates samples where PS process have great influence in the output spectra.
20

Simulação do pico de superfície de Al e Si

Silva Junior, Agenor Hentz da January 2004 (has links)
Espalhamento de íon de energia média (MEIS), em conjunto com as técnicas de sombreamento e bloqueio, representa um poderoso método para a determinação de parâmetros estruturais e vibracionais de superfícies cristalinas. Apesar disto, as formas do espectro de perda de energia iônica não são, normalmente, completamente analisadas, pois requerem um conhecimento profundo dos mecanismos de transferência de energia. A probabilidade de excitação/ionização para cada camada interna em uma colisão única representa um aspecto importante neste caso, uma vez que são envolvidas só algumas colisões. Assim, teorias padrão de freamento ou métodos semi-empíricos baseados em distribuições gaussianas de perda de energia não podem ser utilizadas neste caso. Em substituição, a dependência quanto ao parâmetro de impacto dos processos eletrônicos de excitação deve ser levado em conta em uma aproximação estocástica que conduz, em geral, a uma forma assimétrica. Além disso, sob condições de sombreamento e bloqueio somente colisões com um pequeno parâmetro de impacto são importantes. Este é o melhor cenário para o estudo dos processos de perda de energia envolvendo elétrons de camada interna. Isto é o que ocorre em medidas de alta-resolução do chamado pico de superfície, uma estrutura de alta-energia que surge em experimentos de retroespalhamento de materiais cristalinos. Esta estrutura têm sido amplamente medida em experimentos de canalização, mas nunca foi analisada apesar de sua detalhada forma. Neste trabalho foi realizada a simulação da distribuição de perda de energia para o pico de superfície, através do programa SILISH (SImulation of LIne SHape). As simulações foram feitas para prótons incidindo sobre os principais eixos de simetria da superfície limpa de Al(110) e de uma amostra não preparada de Si(100). Nesta trabalho foi realizada a primeira simulação ab initio do pico de superfície usando o método de canais acoplados e o modelo de partículas independentes para a perda de energia eletrônica em colisões atômicas únicas. Foi observado que as grandes perdas de energia provenientes da ionização/excitação das camadas internas (camada L) é responsável pela assimetria do pico de superfície. Entretanto, mesmo usando os métodos atuais mais precisos para o cálculo da perda de energia eletrônica (através do método de canais acoplados), importantes desacordos são ainda observados entre a simulação e os dados experimentais. Estes desvios são atribuídos à quebra do modelo de elétron independente. Desta forma, medidas de perda de energia sob condições de sombreamento/bloqueio podem servir para aumentar nosso entendimento sobre sistemas eletrônicos correlacionados. / Medium-energy ion scattering (MEIS) in connection with shadowing and blocking techniques is a powerful method for the determination of strutctural and vibrational parameters of crystalline surfaces. Nevertheless, the shapes of ion energy-loss spectra are usually not full analyzed, because this requires an improved knowledge on the energy-transfer mechanisms. The differential excitation/ionization probability for each subshell in a single collision is the important quantity in this case, since generally only few collisions are involved. Thus, standard stopping theories or semi-empirical methods based on gaussian energy-loss distributions cannot sucessfully be used. Instead, the impact parameter dependence of electronic exctitation processes has to be taken into account in a stochastic approach which leads, in general, to an asymmetric line shape. Moreover, under shadowing and blocking conditions only collisions with very small impact parameters are important. This provides the best scenario to study the energy-loss processes involving inner-shell electrons. In fact, this is realized in high-resolution measurements of the so-called surface peak, a high-energy structure that appears in backscattering experiments for crystalline materials. This structure has been widely measured in channeling experiments, but was never analyzed regarding its detailed shape. Here we report on a Monte Carlo simulation of the energy-loss distribution of the surface peak (SILISH: SImulation of LIne SHape). The simulations were performed for protons impinging on the main axes of a clean Al(110) surface as well as on non-prepared Si(100) surface. We provide the first full ab-initio simulation of the surface peak using the coupled-channel method and the independent-particle model for the electronic energy loss in individual atomic collisions. We have observed that large energy losses arising from inner-shell (L-shell) ionization/excitation are responsible for the surface peak asymmetry. However, even using the most precise current methods of calculating the electronic energy loss (through the coupled-channel method), important disagreements are still observed between the experimental data and the simulation. These deviations are attributed to a breakdown ot the independent-electron model. In this way, measurements of the energy loss under shadowing/blocking conditions might serve to improve out understanding of dynamically correlated electronic systems.

Page generated in 0.1147 seconds