• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 8
  • 5
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 52
  • 17
  • 12
  • 11
  • 10
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Direct and Indirect Sources of Human Exposure to Perfluorinated Carboxylates: Investigating the Significance of Perfluorinated Carboxylate Reactive Precursor Metabolites

Rand, Amelia 09 August 2013 (has links)
Perfluorinated carboxylates (PFCAs) are persistent and ubiquitous in the environment. Humans are exposed to PFCAs through direct and indirect sources, although the relative importance of each is uncertain. Direct sources of PFCAs have been attributed to two primary fluorochemical manufacturing processes: electrochemical fluorination (ECF) and telomerization. A focus of this thesis was to elucidate an additional direct source of PFCAs resulting from the direct fluorination of polyolefin materials. High density polyethylene bottles with varying levels of fluorination were observed to contain significant amounts of PFCAs, particularly those with carbon chain-lengths ≤ C6, marking an unexplored source of PFCA exposure. PFCAs are also produced indirectly from the biotransformation of fluorotelomer-based compounds, such as polyfluoroalkyl phosphate esters (PAPs) and fluorotelomer alcohols (FTOHs). During this transformation process, two predominant classes of metabolic intermediates are formed: the fluorotelomer unsaturated aldehydes (FTUALs) and the fluorotelomer unsaturated carboxylic acids (FTUCAs). Another focus of this thesis was to examine the reactivity of FTUALs and FTUCAs with endogenous nucleophiles such as glutathione (GSH), select amino acids, and model proteins. FTUALs formed adducts with all nucleophiles examined, where those having shorter carbon chain lengths (i.e. 6:2 and 8:2 FTUAL) were more reactive than longer carbon chains (i.e. 10:2 FTUAL). By contrast, FTUCAs had comparably limited reactivity; although FTUCAs showed mild reactivity with GSH, they did not react with any other nucleophiles. In vitro and in vivo experiments were carried out to determine the extent of protein binding formed from the biotransformation of fluorotelomer-based compounds, including the 8:2 FTOH and the 6:2 PAP diester. A significant portion of these biotransformations yielded covalent protein binding at nmol/mg protein concentrations. Protein adducts were observed predominantly in rat liver and also in plasma and kidney. The formation of reactive intermediates may be toxicologically important through protein deactivation. Cellular toxicity of FTUALs was significantly higher compared to PFCAs and the acid metabolic intermediates (i.e. FTUCAs). The EC50 values calculated from dose-response incubations were dependant on chain length and functional group. The work in this thesis examined an unexplored consequence of indirect exposure to PFCAs, potentially impacting the relative importance of PFCA exposure sources.
12

Understanding Sources of Perfluorinated Acids to Biological Systems

Butt, Craig 15 September 2011 (has links)
The overall aim of this thesis was to investigate the fate of perfluorinated alkyl compounds (PFCs) in biological systems. During the past several years, it has been shown that wildlife are ubiquitously contaminated with two classes of PFCs, the perfluoroalkyl carboxylates (CxF2x+1C(O)OH, PFCAs) and sulfonates (CxF2x+1SO3H, PFSAs). However, there is still considerable uncertainty regarding how wildlife are accumulating these PFCs, particularly in remote areas such as the Canadian arctic. The potential for fluorotelomer acrylate monomers (CxF2x+1CH2CH2OC(O)CH=CH2, FTAcs) to act as precursors to PFCAs through atmospheric oxidation was investigated using smog chamber experiments. FTAc atmospheric fate is determined by OH radical reaction with a lifetime of approximately 1 day. The sole primary product of this reaction was the 4:2 fluorotelomer glyoxylate which is expected to undergo further atmospheric oxidation or photolysis to ultimately yield PFCAs. Temporal and spatial trends of PFCs in arctic ringed seals and seabirds were investigated to assist in understanding PFC transport mechanisms to remote regions. In ringed seals, perfluorooctane sulfonate (PFOS) levels decreased rapidly, coinciding with the phase out by the major manufacturer. These findings are consistent with volatile precursors as the dominant source of PFCs to arctic wildlife. The bioaccumulation and biotransformation of the 8:2 FTAc was investigated in two complimentary studies with rainbow trout. During the in vivo dietary exposure study, fish rapidly accumulated and biotransformed the 8:2 FTAc, with intermediate metabolites observed within 1 hour of dosing. Perfluorooctanoate (PFOA), perfluorononanoate (PFNA) and perfluoroheptanoate (PFHpA) were formed and accumulated in low yields. The carboxylesterase activity in the trout liver and stomach was investigated using in vivo sub-cellular (S9) incubations. Very high esterase activities were shown with approximately equal efficiency in the stomach and liver. The metabolic pathway of the 8:2 fluorotelomer alcohol (8:2 FTOH) was investigated by separately dosing whole rainbow trout with three intermediate metabolites that represented important branching points. The 7:3 fluorotelomer saturated carboxylate (FTCA) did not form PFOA, but formed PFHpA and the 7:3 fluorotelomer unsaturated carboxylate (FTUCA). The 8:2 FTCA and 8:2 FTUCA did form PFOA, confirming a “beta-like-oxidation” mechanism.
13

Understanding Sources of Perfluorinated Acids to Biological Systems

Butt, Craig 15 September 2011 (has links)
The overall aim of this thesis was to investigate the fate of perfluorinated alkyl compounds (PFCs) in biological systems. During the past several years, it has been shown that wildlife are ubiquitously contaminated with two classes of PFCs, the perfluoroalkyl carboxylates (CxF2x+1C(O)OH, PFCAs) and sulfonates (CxF2x+1SO3H, PFSAs). However, there is still considerable uncertainty regarding how wildlife are accumulating these PFCs, particularly in remote areas such as the Canadian arctic. The potential for fluorotelomer acrylate monomers (CxF2x+1CH2CH2OC(O)CH=CH2, FTAcs) to act as precursors to PFCAs through atmospheric oxidation was investigated using smog chamber experiments. FTAc atmospheric fate is determined by OH radical reaction with a lifetime of approximately 1 day. The sole primary product of this reaction was the 4:2 fluorotelomer glyoxylate which is expected to undergo further atmospheric oxidation or photolysis to ultimately yield PFCAs. Temporal and spatial trends of PFCs in arctic ringed seals and seabirds were investigated to assist in understanding PFC transport mechanisms to remote regions. In ringed seals, perfluorooctane sulfonate (PFOS) levels decreased rapidly, coinciding with the phase out by the major manufacturer. These findings are consistent with volatile precursors as the dominant source of PFCs to arctic wildlife. The bioaccumulation and biotransformation of the 8:2 FTAc was investigated in two complimentary studies with rainbow trout. During the in vivo dietary exposure study, fish rapidly accumulated and biotransformed the 8:2 FTAc, with intermediate metabolites observed within 1 hour of dosing. Perfluorooctanoate (PFOA), perfluorononanoate (PFNA) and perfluoroheptanoate (PFHpA) were formed and accumulated in low yields. The carboxylesterase activity in the trout liver and stomach was investigated using in vivo sub-cellular (S9) incubations. Very high esterase activities were shown with approximately equal efficiency in the stomach and liver. The metabolic pathway of the 8:2 fluorotelomer alcohol (8:2 FTOH) was investigated by separately dosing whole rainbow trout with three intermediate metabolites that represented important branching points. The 7:3 fluorotelomer saturated carboxylate (FTCA) did not form PFOA, but formed PFHpA and the 7:3 fluorotelomer unsaturated carboxylate (FTUCA). The 8:2 FTCA and 8:2 FTUCA did form PFOA, confirming a “beta-like-oxidation” mechanism.
14

Chemical and physical aspects of wear processes in polymers

Richardson, M. O. W. January 1972 (has links)
A series of homogeneous halogen containing polymers have been studied whilst sliding against mild steel and oxides present on mild steel. The degradation characteristics of P. V. C. and C1d P. V. C. have been correlated in terms of current mechano-chemical comminution theory and the process causing the wear of P. V. C., C1d P. V. C., P. T. F. E. and P. C. T. F. E. described in relation to the chemical and physical conditions at the sliding interface. In addition the potential importance of the chemical role of oxide free iron surfaces in wear processes has been demonstrated by interacting an analogue compound of P. T. F. E. (n-C5F12) with clean iron under ultra high vacuum conditions. The resulting fragmentation of the perfluorinated compound is discussed and a simplified degradation mechanism suggested.
15

Study on Effective Adsorption Conditions for Perfluorinated Compounds (PFCs) Removal in Municipal and Industrial Wastewaters in Thailand and Japan / タイ王国および日本における下水および産業廃水中のペルフルオロ化合物類の効率的吸着条件に関する研究

Pattarawan Chularueangaksorn 24 September 2013 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(地球環境学) / 甲第17932号 / 地環博第111号 / 新制||地環||22(附属図書館) / 30752 / 京都大学大学院地球環境学舎環境マネジメント専攻 / (主査)教授 藤井 滋穂, 教授 伊藤 禎彦, 准教授 田中 周平 / 学位規則第4条第1項該当 / Doctor of Global Environmental Studies / Kyoto University / DFAM
16

Atmospheric Chemistry of Polyfluorinated Compounds: Long-lived Greenhouse Gases and Sources of Perfluorinated Acids

Young, Cora Jean Louise 15 September 2011 (has links)
Fluorinated compounds are environmentally persistent and have been demonstrated to bioaccumulate and contribute to climate change. The focus of this work was to better understand the atmospheric chemistry of poly- and per-fluorinated compounds in order to appreciate their impacts on the environment. Several fluorinated compounds exist for which data on climate impacts do not exist. Radiative efficiencies (REs) and atmospheric lifetimes of two new long-lived greenhouse gases (LLGHGs) were determined using smog chamber techniques: perfluoropolyethers and perfluoroalkyl amines. Through this, it was observed that RE was not directly related to the number of carbon-fluorine bonds. A structure-activity relationship was created to allow the determination of RE solely from the chemical structure of the compound. Also, a novel method was developed to detect polyfluorinated LLGHGs in the atmosphere. Using carbotrap, thermal desorption and cryogenic extraction coupled to GC-MS, atmospheric measurements can be made for a number of previously undetected compounds. A perfluoroalkyl amine was detected in the atmosphere using this technique, which is the compound with the highest RE ever detected in the atmosphere. Perfluorocarboxylic acids (PFCAs) are water soluble and non-volatile, suggesting they are not susceptible to long-range transport. A hypothesis was derived to explain the ubiquitous distribution of these compounds involving atmospheric formation of PFCAs from volatile precursors. Using smog chamber techniques with offline analysis, perfluorobutenes and fluorotelomer iodides were shown to yield PFCAs from atmospheric oxidation. Dehydrofluorination of perfluorinated alcohols (PFOHs) is poorly understood in the mechanism of PFCA atmospheric formation. Using density functional techniques, overtone-induced photolysis was shown to lead to dehydrofluorination of PFOHs. In the presence of water, this mechanism could be a sink of PFOHs in the atmosphere. Confirmation of the importance of volatile precursors was derived from examination of snow from High Arctic ice caps. This provided the first empirical evidence of atmospheric deposition. Through the analytes observed, fluxes and temporal trends, it was concluded that atmospheric oxidation of volatile precursors is an important source of PFCAs to the Arctic.
17

Theoretical Studies on Perfluorinated Acids of Environmental Significance

Hidalgo-Puertas, Abdel 04 September 2015 (has links)
A new approach for predicting octanol-water partition coefficients (Log P) of linear perfluorinated compounds, making use of the limited experimental data available, previous observations and the consistent similarities observed between the experimental and calculated (with electronic structure methods and using EPI suite) slopes of the linear plots of Log P values with the number of carbon atoms (N = 2 to 11) is described here. Eight families of linear organic compounds were investigated: carboxylic acids, perfluorinated carboxylic acids, sulfonic acids and perfluorinated sulfonic acids, together with their corresponding conjugate bases. To the best of our knowledge, this work reports the first application of density functional theory methods to the calculation of Log P values of perfluorinated compounds. A second part of the thesis, describes the study of the thermodynamic stability of the PFOA family of 39 structural isomers with the M06-2X, LC-ωPBE, B97D and B3LYP functionals and with the PM6 method. The PM6 results closely resemble the M06-2X results for neutral PFOAs, but greatly disagree regarding anions. The four functionals applied behave similarly from a qualitative point of view, but quantitatively speaking, the LC-ωPBE and B97D results are between the M06-2X and B3LYP stability results. M06-2X ranks highly substituted isomers as more stable than did B3LYP, and ranks less-branched isomers quite low in relative stability compared to B3LYP. Various similarities with a former PFOSs study applying the M06-2X and B3LYP functionals have been identified. The degree of branching within structural isomers cannot always be precisely determined, and is not the only aspect that determines thermodynamic stability; the pattern of substitution seems to also play a significant role. / Graduate
18

Stanovení perfluorovaných organických kyselin v půdách chromatografickými metodami / Stanovení perfluorovaných organických kyselin v půdách metodou plynové chromatografie

Okáľová, Zuzana January 2014 (has links)
A method employing solid-liquid extraction with methanol and solid-phase extraction (SPE) clean-up step using Supelco SupelcleanTM ENVITM -Carb 3 mL cartridges (0.25 g graphitized carbon adsorbent) followed by gas chromatography - mass spectrometry with negative chemical ionization (GC-NCI-MS) has been optimized and applied for determination of ultratrace concentrations of C6 - C12 perfluorinated carboxylic acids (PFCAs) in soil samples. A sophisticated multifactorial statistic method, response surface methodology, employing 1/16 fractional factorial design and the face centered central composite design as well has been applied to find the significant parameters which influence the extraction procedure of PFCAs and SPE clean-up step and to set the optimum extraction and clean-up levels of eight parameters evaluated yielding the maximum extraction recovery of all PFCAs. The analyte extraction recoveries and the limits of detection and quantification have been obtained. The recoveries of individual PFCAs were within a range from 85 to 100 % for analyte spiked concentration level of 1.1 ng g−1 and within a range from 91 to 107 % for analyte spiked level of 2.1 ng g−1 . The values of limits of detection were 1.9 - 3.0 pg g−1 and limits of quantification 6.4 - 10.1 pg g−1 . This analytical method has...
19

Environmental occurrence and fate of semifluorinated n-alkanes and perfluorinated alkyl acids present in ski waxes

Plassmann, Merle M. January 2011 (has links)
Highly fluorinated organic compounds are emerging environmental contaminants of concern, due to their persistence, ubiquitous distribution, bioaccumulation potential and toxicity. Ski waxes are sources of highly fluorinated chemicals to the environment that have not been investigated so far. Some contain fluorinated additives such as semifluorinated n-alkanes (SFAs). This thesis investigated the fate of SFAs after abrasion onto snow through skiing activities. Furthermore, perfluorinated alkyl acids (PFAAs) were found to be present in fluorinated ski waxes. A lot of attention has been paid to elucidating the environmental fate of PFAAs during the past decade. However, nothing was known so far about their release from melting snow packs. Analytical methods for quantification of SFAs in different environmental matrices were developed. The methods were used to investigate the fate of SFAs during snow melt and to study their occurrence in ski areas. Laboratory snow melt experiments and model-based fate simulations suggested that SFAs will sorb to the snow grain surface and particles in the bulk snow and, after snowmelt, will end up on the underlying (soil) surface. SFAs were detected and quantified for the first time in snow and soil samples taken from a ski area in Sweden. Comparison of concentrations in snow and soil did not give any evidence for long-term accumulation of SFAs in surface soil, but suggested volatilization of shorter chain homologues during snow melt. Such a volatilization could also explain an observed SFA pattern difference between snow and soil samples. Laboratory scale snow melt experiments were also used to investigate the behavior of PFAAs during snowmelt. PFAAs were released with the melt water from the snow pack in pulses. The pulses occurred early, late or with a so far unknown peak elution in the middle of the snowmelt, depending on the hydrophobicity of the PFAAs. These peak releases were further influenced by the age of the snow pack and thus the snow surface area and to a lesser extent by pH and ion concentrations.
20

DIBENZO[a,c]PHENAZINE AND 2,3- DIPHENYLQUINOXALINE DISCOGENS WITH PHENANTHROLINE AND CROWN ETHER, AND FLUOROUS POLYCATENAR LIQUID CRYSTALS

Tzeng, Mei-Chun 06 September 2012 (has links)
In this PhD thesis, there are two major motifs: dibenzo[a,c]phenazine- and 2,3-diphenylquinoxaline novel discogens and fluorous polycatenar liquid crystals. The thermo properties of these new compounds were elucidated using optical microscopy, differential scanning calorimetry and powder X-ray diffraction. In the phenanthroline series (Chapter 2), 1,10-phenanthroline core incorporated into dibenzo[a,c]phenazine structure exhibit columnar mesophases with extremely wide width. X-ray diffraction study pinpoints to that half-shaped mesogens with reduced symmetry has preferential intra-molecular parallel conformation in the mesophase. This molecule has gel ability with different solvents. In dimeric crown ether series (Chapter 3A), 2,3-diphenylquinoxaline-based mesogens containing dibenzo-18-crown-6 has hexagonal columnar mesophase with extremely narrow width. Incorporation potassium metal ion into crown moiety dramatically enhanced mesomorphic stability and for metal complexes, as side chain increases, hexagonal mesophases predominate over rectangular mesophases. Furthermore, both in hexagon or rectangle, per columnar slice consist of two molecules. All of prolonged long glassy formation up to one year at room temperature. In monomeric crown ether series (Chapter 3B), metal-free molecules fail to be mesomorphic, but complexation with lithium and sodium metals enhanced thermo stability and rectangular mesophase (C2mm) were found. Also, per columnar slice was comprised of four molecules. Last (Chapter 4), a series of tri- and tetra-catenar mesogens containing various combinations of hydrocarbon and semiperfluorocarbon chains has been prepared to elucidate the fluorophlic-fluorophobic effect on mesomorphism. Tricatenar with one terminal semiperfluoro- and two hydrocarbon chains are aligned into lamellar periodicity driven by the mutual incompatibility of the hydrocarbon and fluorocarbon portions. But unsymmetric tetracatenar mesogens show rectangular mesophase.

Page generated in 0.0545 seconds