Spelling suggestions: "subject:"perfluorinated compounds"" "subject:"erfluorinated compounds""
1 |
Giftfria förskolor i Nordmalings kommun : En inventering av förskolor med åtgärdsförslag för att möjliggöra en minskning av barns negativa hälsoeffekter till följd av kemikalieexponeringNorman, Belinda January 2016 (has links)
Humans are exposed to chemicals every day in our indoor environment. Chemicals have contributed to increased prosperity but also caused negative health effects. Children are vulnerable to chemicals because of their development and they breathe and drink more in relation to their body weight. That is why it’s important to reduce chemical exposure in environment for children. Preschools have a central role when it comes to materials and products that may pose a risk for exposure. The municipality has an important role to achieve a nontoxic environment which is based on a Swedish environmental quality goal (Non-toxic environment). This study is a part of the prioritized local environmental work in the municipal of Nordmaling. An inventory has been done to find out what type of chemicals that may expose children to harmful effects in preschools of Nordmaling. Electronic as a toy, soft and smelling toys, plastic around food and drinks, foam play pads were common products found during the inventory. This materials containing phthalates, brominated flame retardants, perfluorinated compounds, bisphenol A, lead and cadmium that can expose children through leaching into the indoor environment. A guidance have been constructed to achieve a non-toxic environment based on the results from the inventory in a cost effective way. The conclusion of the report is clear, identified problem areas can quickly be accomplished with small measures and low costs. Increased awareness of harmful substances and good routines for purchases and cleaning can further reduce the exposure to chemicals in the preschools.
|
2 |
Sonochemical Defluorination of Perfluorinated Compounds by Activated Persulfate IonsGray, Kevin M 06 July 2018 (has links)
Polyfluorinated compounds (PFCs) are a class of anthropogenic chemicals that have been found in groundwater and wastewater around the world. Perfluoroctane sulfonate (PFOS) and perfluoroctanoic acid (PFOA) are primarily used for industrial surfactants, and aqueous film forming foams (AFFFs). These PFCs and many of their constituents have been found to be carcinogenic to humans and other animals. A simple method for defluorination of these compounds is needed. Advanced oxidation of PFOS, PFHxS, and PFBS-k was carried out using activated sodium persulfate through ultrasonic irradiation with the following condition; [PFC] = 20 millimolar (mM), [Na2S2O8] = 25 mM, pH = 7, and 25°C. Fluoride concentrations were quantified by ion chromatography (IC). In laboratory experiments, batch reactions of PFBS solutions were conducted in purified water at different pH conditions and N2S¬2O8: PFBS molar ratios of 1:1, 2:1, 10:1, and 100:1 respectively. Solution pH was maintained at 7 using HNO3. Of the three compounds, PFHxS had the greatest defluorination (11%) after 120 minutes reaction time. However, PFBS-K had the greatest increase in defluorination (115%) between the control ultrasound (US) experiment and the combination experiment. When Na2S2O8 was increased, the defluorination ratio of PFBS decreased. This decrease was partly attributed to scavenging reactions between SO4¯• and S2O8²¯. These results show a synergism between ultrasonic irradiation and activated sodium persulfate as a form of advanced oxidation. Recommendations for further research into defluorination of PFOS and its constituents by ultrasonic degradation include: the use of high performance liquid chromatograph with accompanying mass spectrometry (HPLC/MS), the use of an ultrasonic probe with alternate frequencies, and the effects of surface tension on defluorination.
|
3 |
The effect of in-utero-through-postnatal exposure of mice to perfluorinated compounds on airway inflammation and functionRyu, Min Hyung 15 November 2014 (has links)
Perfluorinated compounds, non-degradable xenobiotics in many consumer products, can cause developmental toxicity in animals, and human exposure is associated with asthma symptoms. We tested the hypothesis that sustained chronic exposure to perfluorooctanoic acid (PFOA), fluorotelomer alcohol (FTOH) or perfluorooctanesulfonic acid (PFOS) induces lung dysfunction that exacerbates allergen-induced airway hyperresponsiveness (AHR) and inflammation. Mice were exposed to the chemicals from early gestation day to adulthood. Some pups were sensitized and challenged with ovalbumin. Serum PFOA was analyzed by liquid chromatograph-tandem mass spectrometry. Lung function was measured using a small animal ventilator. We assayed inflammatory cells in the lung, performed PCR for lung cytokines, and examined bronchial goblet cell hyperplasia by histology. Here we show that either PFOA or FTOH exposure can induce AHR, but neither one predisposes for exaggerated allergic lung inflammation or AHR. FTOH or PFOS exposure appears to suppress allergic lung inflammation, but does not affect allergic lung dysfunction.
|
4 |
Study on Effective Adsorption Conditions for Perfluorinated Compounds (PFCs) Removal in Municipal and Industrial Wastewaters in Thailand and Japan / タイ王国および日本における下水および産業廃水中のペルフルオロ化合物類の効率的吸着条件に関する研究Pattarawan Chularueangaksorn 24 September 2013 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(地球環境学) / 甲第17932号 / 地環博第111号 / 新制||地環||22(附属図書館) / 30752 / 京都大学大学院地球環境学舎環境マネジメント専攻 / (主査)教授 藤井 滋穂, 教授 伊藤 禎彦, 准教授 田中 周平 / 学位規則第4条第1項該当 / Doctor of Global Environmental Studies / Kyoto University / DFAM
|
5 |
Theoretical Studies on Perfluorinated Acids of Environmental SignificanceHidalgo-Puertas, Abdel 04 September 2015 (has links)
A new approach for predicting octanol-water partition coefficients (Log P) of linear perfluorinated compounds, making use of the limited experimental data available, previous observations and the consistent similarities observed between the experimental and calculated (with electronic structure methods and using EPI suite) slopes of the linear plots of Log P values with the number of carbon atoms (N = 2 to 11) is described here. Eight families of linear organic compounds were investigated: carboxylic acids, perfluorinated carboxylic acids, sulfonic acids and perfluorinated sulfonic acids, together with their corresponding conjugate bases. To the best of our knowledge, this work reports the first application of density functional theory methods to the calculation of Log P values of perfluorinated compounds. A second part of the thesis, describes the study of the thermodynamic stability of the PFOA family of 39 structural isomers with the M06-2X, LC-ωPBE, B97D and B3LYP functionals and with the PM6 method. The PM6 results closely resemble the M06-2X results for neutral PFOAs, but greatly disagree regarding anions. The four functionals applied behave similarly from a qualitative point of view, but quantitatively speaking, the LC-ωPBE and B97D results are between the M06-2X and B3LYP stability results. M06-2X ranks highly substituted isomers as more stable than did B3LYP, and ranks less-branched isomers quite low in relative stability compared to B3LYP. Various similarities with a former PFOSs study applying the M06-2X and B3LYP functionals have been identified. The degree of branching within structural isomers cannot always be precisely determined, and is not the only aspect that determines thermodynamic stability; the pattern of substitution seems to also play a significant role. / Graduate
|
6 |
Adsorption of perfluorinated water contaminants on Agave sisalana activated carbon fibreImwer, Serge Mapan January 2014 (has links)
Thesis submitted in fulfilment of the requirements for the degree
Magister Technologiae: Chemical Engineering
in the Faculty of Engineering
at the
Cape Peninsula University of Technology
2014 / An awareness campaign on the harmful effects of Perfluorinated compounds (PFCs), especially Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonate (PFOS) has been conducted to inform the general public about the impact of these organic compounds on hu-mans and biota. These compounds have been shown to be potential carcinogens, as indi-cated by the United States Environmental Protection Agency (USEPA) and the Organization for Economic Co-operation and Development . A major concern about these chemicals is that they have been widely used in consumer products and have been detected in food and drinking water. They have been determined to be resistant to biological degradation, owing to their unique chemical and physical properties (fluorine atoms that have substituted hydrogen atoms in their chemical structure). Owing to their characteristics of being highly soluble in water, they cannot be removed from water using ordinary purification processes. Studies have been conducted to evaluate the removal of PFOA and PFOS from water using different methods. Among these methods, it has been proved that adsorption is a suitable method with the best adsorbent identified as activated carbon (AC). AC can be found in many forms, including as a fibre. The use of AC for the removal of PCFs can be augmented with sonica-tion and electro-chemical methods for rapid absorption of these compounds. The aim of this study was to remove these contaminants using a microporous AC fibre (ACF) made from an indigenous plant, Agave sisalana, which is widely available across sub-Saharan Africa, by using electro-physico-chemical methods. ACF has the following advantages when compared with granulated and/or powdered AC: it has a slightly larger reactive surface area; small quantities can be used; it is easily handled; it retains its shape under stress, thus does not require additional filtration to remove particulate residue; and can be regenerated easily.
The manufacturing process of the ACF was done in several steps: 1) harvesting of the A. sisalana leaves, stripping them to obtain wet fibre by scrapping using traditional meth-ods, 2) chemical activation using NaOH, KOH, ZnCl2 and H3PO4, employing a spraying method instead of soaking, which was followed by drying, and 3) carbonisation in a furnace at the required temperature. The use of activation reagents involved the determination of an appropriate concentration, with optimum concentrations determined as 0.54M, 0.625M, 1.59M and 0.73M for NaOH, KOH, ZnCl2 and H3PO4, respectively. Apart from the fibre acti-vation, temperature and activation time were also important parameters that were optimised. A response surface methodology was used to design a set of experiments that provided the optimum temperature and activation time. From the input variables, the Expert design soft-
ware generated experimental runs (n = 13) for each fibre activation reagent used with a tem-perature range of 450°C to 933°C being assessed for carbonisation time of between 17 to 208 minutes. ACF activated with KOH (0.54 M) and characterised by micropores with the highest surface area achieved being 1285.8 m2/g in comparison with Granular activated car-bon (Ounas et al., 2009) with an average surface area range of 1000 to 1100 m2/g. This sur-face area was measured using Dubinin-Astakhov isotherm with CO2 at 273 K. The physical characteristics of the ACF were analysed using a Scanning Electron Microscope to ascertain the integrity of the fibres.
PFOA and PFOS were analysed using a solid phase extraction (SPE) method fol-lowed by analysis using a liquid chromatography/tandem mass spectrometer (SPE-LC/MS/MS). The water sample volume used for extraction was 60 mL. The instrument used was an HPLC - Ultimate 3000 Dionex HPLC system and MS model - Amazon SL Ion Trap, with the following MS/MS operational conditions and ion mode: MS Interface → ESI; dry temp → 350C; nebulising pressure → 60 psi; dry gas flow → 10 L/min; ionisation mode → negative; capillary voltage → +4500V; end plate offset → −500V, while the separation col-umn was a Waters Sunfire C18, 5 μm, 4.6 × 150 mm column (supplier: Waters, Dublin, Ire-land), with an operational temperature of 30C.
Initially, adsorption studies (n = 48) using sonication (20 kHz) in batch systems indi-cated efficient removal of PFOA and PFOS within 120 min, with numerous samples (n = 14) achieving complete removal for both PFOA and PFOS. The minimum removal rates ob-served were 65.55% for PFOA and 95.92% for PFOS. From the ACF samples in which high-est removal rates were achieved, a number (n = 3) of the ACF samples were selected for surface characterisation. Based on the sonication in the previous experiments, an electro-physico-chemical adsorption regime was designed, to facilitate the rapid adsorption of PFOS and PFOA from contaminated drinking water in an electrolytic cell. In these experiments, si-multaneous sonication and electrolysis were used. A comparison was made between ACF produced in this study and the commercial activated carbon. The result revealed that adsorp-tion of PFOA and PFOS on ACF was a monolayer adsorption type phenomenon and had the best fit using a Freundlich isotherm compared with the Langmuir isotherm. Adsorption of PFOA and PFOS on the commercial AC presented a multilayer adsorption type of isotherm fit with the Langmuir isotherm having the best fit compared with the Freundlich isotherm.
|
7 |
Study on Contamination of Perfluorinated Compounds (PFCs) in Water Environment and Industrial Wastewater in Thailand / タイにおける水環境および工業廃水のペルフルオロ化合物(PFCs)汚染に関する研究 / タイ ニ オケル ミズ カンキョウ オヨビ コウギョウ ハイスイ ノ ペルフルオロ カゴウブツ ( PFCs ) オセン ニ カンスル ケンキュウKunacheva, Chinagarn 24 September 2009 (has links)
PFCs are used in a wide variety of industrial and commercial applications for more than 50 years. Among variation of PFCs, Perfluorooctane sulfonate (PFOS) (CF3(CF2)7SO3-) and perfluorooctanoic acid (PFOA) (CF3(CF2)6COO-) are the most dominant PFCs. In May 2009, PFOS, its salts and perfluorooctane sulfonyl fluoride (PFOSF) are designated as new Persistent Organic Compounds (POPs) which are resistant, bio-accumulating, and having potential of causing adverse effects to humans and environment (IISD, 2009). However, products containing PFCs are still being manufactured and used, which could be the main reason why they are still observed in the environment and biota (Berger et al., 2004; Saito et al., 2003; Sinclair et al., 2004). The study is focused on the PFCs contamination in water and industrial wastewater around the Central and Eastern Thailand, where is one of the major industrialized areas in the country. The samplings were conducted in major rivers, Chao Phraya, Bangpakong and Tachin River. PFCs were contaminated in all rivers. The average total PFCs were 15.10 ng/L, 18.29 ng/L and 7.40 ng/L in Chao Phraya, Bangpakong and Tachin River, respectively. PFOS and PFOA were the predominant PFCs in all samples. The total of 118.6 g/d PFOS and 323.6 g/d PFOA were released from the three rivers to the Gulf of Thailand. The survey was also conducted in small rivers, reservoirs, and coastal water around Eastern Thailand, where many industrial zones (IZ) are located. The geometric mean (GM) concentration of each PFC was ranged from 2.3 to 107.7 ng/L in small rivers, 2.2 to 212.2 ng/L in reservoirs, and 0.8 to 41.1 ng/L in coastal water samples. The higher PFCs contaminations were detected in the surface water around the industrial zones, where might be the sources of these compounds. Field surveys were also conducted in ten industrial zones (IZ1 – IZ10) to identify the occurrences of PFCs from in industries. The recovery rates of PFCs in the samples indicated that the matrix interference or enhancement was an important problem in PFCs analysis. The elevated concentrations were detected in electronics, textile, chemicals and glass making industries. Total PFCs concentrations in the influent of WWTP were ranged from 39.6 to 3, 344.1 ng/L. Ten industrial zones released 188.41 g/d of PFCs. All of the treatment processes inside industrial zones were biological processes, which were reported that they were not effective to remove PFCs. The influence of industrial discharges was affected not only the rivers and reservoirs but also in the coastal water. The PFCs in rivers and reservoirs were discharged to the Gulf of Thailand, which is the important food source for Thai people and exports. Due to the problems in industrial wastewater analysis, several optimizing options were applied in PFCs analytical method especially in Solid Phase Extraction (SPE) procedure. The combination of PresepC-Agri and Oasis®HLB was the better option for analyzing PFCs in water samples. The optimum flow rate for loading the samples was 5 mL/min. Methanol (2 mL) plus Acetronitrile (2 mL) was the effective way to elute PFCs from the cartridges. The specific solvent percentages to elute each PFCs were identified for both water and industrial wastewater samples. The matrix removal methods by using Envi-Carb and Ultrafilter were effective for different types of industrial wastewater samples. PFCs were detected in surface waters, which are the sources of tap and drinking water for the people in Central and Eastern Thailand. The surveys were conducted in Bangkok city. Samples were collected from water treatment plants (WTPs), tap water, and drinking water. PFCs were detected in all tap water and drinking water samples. PFOS and PFOA concentrations in raw water of WTP were found 4.29 ng/L and 16.54 ng/L, respectively. The average PFOS and PFOA concentrations in tap water were detected 0.17 and 3.58 ng/L, respectively. The tap water results also showed that PFOS and PFOA concentrations were not similarly detected in all area in the city. PFOA were detected higher in the western area, while PFOS concentration was quite similar in all areas. Overall, it can be concluded that the current treatment processes were not completely remove PFCs. Nevertheless, PFCs in particulate phase were effectively removed by the primary sedimentation and rapid sand filtration. Elevated PFCs were found in the industrial zones (IZ2 and IZ5). To understand the distribution and fate of PFCs during industrial wastewater process, PFCs mass flows were studied. Higher PFCs in adsorbed phase were detected only in activated sludge and some influent samples. In IZ2, PFOA loading in the dissolved phase increased after activated sludge process by 5%. There was no degradation of PFOA inside the polishing pond. The highest loading to the treatment plant was PFOS with the loading of 2, 382 mg/d and 1, 529 mg/d in dissolved and adsorbed phase, respectively. Unlike PFCAs that showed no removal in the treatment process, PFOS were decreased during the treatment processes with 36% in the activated sludge process and 36% in the polishing pond. The predominant in this IZ5 was PFOS. The increasing of PFOS was also found in this treatment plant dissimilar to IZ2. PFOS was increasing by 45% in dissolved phase and 47% in adsorbed phase. All of PFCs in this industrial zone were detected higher in the effluent, indicated that PFCs’ precursors should be the major effects of this contamination. / Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第14930号 / 工博第3157号 / 新制||工||1473(附属図書館) / 27368 / UT51-2009-M844 / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 田中 宏明, 教授 清水 芳久, 教授 藤井 滋穂 / 学位規則第4条第1項該当
|
8 |
Development of Effective Removal Methods of PFCs (Perfluorinated Compounds) in Water by Adsorption and Coagulation / 吸着および凝集による水中PFCs(ペルフルオロ化合物)の効率的除去法の開発SENEVIRATHNA THENNAKOON MUDIYANSELAGE LALANTHA DHARSHANA SENEVIRATHNA 24 September 2010 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第15659号 / 工博第3317号 / 新制||工||1501(附属図書館) / 28196 / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 田中 宏明, 教授 清水 芳久, 教授 藤井 滋穂 / 学位規則第4条第1項該当
|
9 |
REMOVAL OF EMERGING CONTAMINANTS FROM AQUEOUS SOLUTION BY OZONE -BASED PROCESSESRani, Rupam January 2013 (has links)
The presence of emerging contaminants (ECs) in water and wastewater systems has become a subject of significant concern worldwide. These emerging contaminants are complex organic molecules which potentially affect human health and environment. Conventional wastewater treatment plants are unable to completely remove these contaminants from water and therefore can discharge them into environment. The need to develop effective methods for ECs removal is essential. This study assess the potential of ozone based advanced oxidation processes (AOP) to oxidize number of emerging contaminants. Different combinations of ozone with hydrogen peroxide and sodium persulfate were tested. For this study 1-4, dioxane, perfluorinated compounds (PFCs), N,N-Diethyl-metatoluamide, and three pharmaceuticals sulfamethoxazole, trimethoprim and carbamazepine have been selected. The effect of different process parameters such as chemical dosages, ozone weight percent, ozone flow rates, etc. on destruction of ECs were examined. It was observed that 1, 4-dioxane were persistent to direct ozone reaction, however were easily oxidized by hydroxyl radical. However, ozonation was solely very effective (> 99 %) in removing pharmaceuticals such as sulfamethoxaole, trimethoprim and carbamazepine. It was not very efficient for the removal of perfluorinated compound and N,N-Diethylmeta-toluamide. The operational conditions were optimized for maximum removal of every compound and their influence on the degradation process is discussed. / Civil Engineering
|
10 |
Perfluorinated compounds and trihalomethanes in drinking water sources of the Western Cape, South AfricaBooi, Xolelwa January 2013 (has links)
Thesis submitted in partial fulfilment of the requirements for the degree of
MAGISTER TECHNOLOGIAE: CHEMICAL ENGINEERING
in the
FACULTY OF ENGINEERING
at the
CAPE PENINSULA UNIVERSITY OF TECHNOLOGY
2013 / This study focused on quantifying two types of internationally regulated contaminants found in drinking water: 1) Trihalomethanes (THMs) and 2) Perfluorinated compounds (PFCs).
The first contaminants monitored were THMs, classified as a group of chemicals that are formed along with others during the disinfection of water using liquid chlorine, chlorine dioxide or chlorine gas. Hence, the resulting compounds are called disinfection by-products (DBPs). The disinfectant reacts with natural organic matter in water to form common THMs, which include chloroform (CHCl3 or CF), bromodichloromethane (CHCl2Br or BDCM), dibromochloromethane (CHClBr2 or DBCM) and bromoform (CHBr3 or BF), with chloroform being the most common in chlorinated water systems. The current study has focused on THMs for two primary reasons: 1) THMs have raised significant concern as a result of evidence that associate their presence in drinking water with potential adverse human health effects, including cancer and 2) the levels of THMs in drinking water post-treatment is not monitored regularly in South Africa and thus far, there is inadequate and limited information about their concentration levels for drinking water treatment plants (DWTPs) and distribution stations (DWDSs) of the Western Cape, South Africa before, distribution to various suburbs, including townships. THMs normally occur at higher levels than any other known DBPs and their presence in treated water is a representative of the occurrence of many other DBPs.
THMs were quantified in chlorinated drinking water obtained from seven (7) DWTPs, namely; Atlantis, Blackheath, Faure, Brooklands, Steenbras, Voelvlei and Wemmershoek, and one DWDS in Plattekloof. This included determining THMs concentration in tap water collected from various suburbs including townships, to assist local authorities in obtaining information on their concentration and whether or not the presence of residual chlorine and organic matter on post-treatment results has increased THMs at the point of use.
THM analysis was performed using liquid-liquid extraction/gas chromatography with electron capture detector (LLE-GC-ECD) analytical process according to the EPA method 501.2, which was used with minor modifications. The instrument operational conditions were as follows: Column → DB5-26, 30 mm, 0.53 mm, 1.0 μm df HP-1 (Agilent Technologies, USA); Carrier gas → Helium at a constant inlet pressure of 15 kPa; Make-up gas → 99.9% Nitrogen gas at 60 L/min; Injector temperature → 40°C; Oven temperature → 270°C and Detector temperature → 300°C. Since natural organic matter (NOM) in raw water is a precursor for THM formation, NOM analysis was performed as total organic carbon (TOC) using Spectroquant TOC test kits. Other drinking water quality parameters analysed were pH, residual free chlorine, conductivity and total dissolved solids (TDS).
The average Total THM concentrations detected from seven of the DWTPs, including the DWDS, ranged from 26.52 μg/L (for Plattekloof) to 32.82 μg/L (for Brooklands), with the observed concentrations being comparable. The average chloroform concentrations were the
highest in all the water samples, ranging from 11.74 μg/L (for Plattekloof) to 22.29 μg/L (for Voelvlei), while DBCM had the lowest concentration. The only DWTP that was not comparable with the seven DWTPs was Atlantis, with the highest average TTHM concentration of 83.48 μg/L and a chloroform concentration of 46.06 μg/L. From the tap water samples collected from 14 Western Cape suburbs, the average TTHM concentrations ranged from 5.30 ug/L (for Mandalay) to 13.12 μg/L (for Browns Farm, Philippi), and all these concentrations were lower than the TTHM concentrations detected in the water samples from the DWTP. Overall, the average total THM and individual THM species concentrations were below the recommended SANS 241:2011 and WHO drinking water guideline limits. This included the observed pH (6.39 to 7.73), residual free chlorine (0.22 to 1.06 mg/L), conductivity (121 to 444 μS/cm), TDS (93.93 to 344.35 mg/L) and TOC (0.38 to 1.20 mg/L). All these water quality parameters were within the specification limits stipulated in SANS 241. However, the average residual free chlorine concentration for Atlantis was very low (0.06 mg/L), which was below the WHO minimum residual free chlorine concentration guideline value of 0.2 mg/L for a distribution network – an indication that suggested the need for a re-chlorination station prior to distribution to households. Low chlorine content might result in the formation of unwanted biofilms in the distribution network, thus reducing the organoleptic properties of the water. Additionally, there was no direct link between several water quality parameters quantified (i.e. pH, TOC and water temperature) to TTHM formation. However, a high chlorine dose was observed to result directly in a higher concentration of chloroform in treated water prior to distribution.
The second contaminants monitored were Perfluorinated compounds (PFCs), which are non-biodegradable, persistent and toxic organic chemicals known for their ability to contaminate environmental matrices, including drinking water sources. In recent years, many researchers considered it essential to identify and quantify PFC levels in drinking water worldwide with the main focus being on the two most abundant PFCs; namely Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonate (PFOS). Their toxic effects to human health, plants and wildlife were also evaluated, classifying them as possible carcinogens. We know from the literature reviewed that, although the presence of PFCs in drinking water has been documented worldwide, there is limited information about their presence specifically in South African drinking water sources, even about less studied PFCs such as Perfluoroheptanoic acid (PFHpA), Perfluorododecanoic acid (PFDoA), Perfluorononanoic acid (PFNA), Perfluoroundecanoic acid (PFUA), Perfluorodecanoic acid (PFDeA) and the well-known PFOA including PFOS. Although several other PFCs have been detected in water sources and reported in various studies, the USEPA only issued drinking water guideline limits for Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonate (PFOS) of 400 ng/L and 200 ng/L, respectively, with no mention of the other PFCs. However, these PFCs have similar properties to those of PFOA and PFOS as they have been shown to impose similar detrimental health effects on human health. This study thus
focused on the detection of PFCs in both raw and treated drinking water in the Western Cape DWTPs such as Atlantis, Blackheath, Faure, Brooklands, Steenbras, Voelvlei and Wemmershoek, and one DWDS in Plattekloof.
Water samples (raw and treated water) used in this study for PFC analysis were collected in 2L polypropylene screw capped bottles. PFC analysis was performed in four sample batches for each location collected through the period of October to December 2012 (summer). PFCs were analysed in accordance with a modified EPA method 537, which entails solid phase extraction (SPE) followed by analysis using a liquid chromatography/tandem mass spectrometer (LC/MS/MS). The slight modification was with the water sample volume used for extraction, which was increased from 250 mL to 500 mL. The instrument used was an HPLC - Ultimate 3000 Dionex HPLC system and MS model - Amazon SL Ion Trap, with the following MS/MS operational conditions and Ion mode: MS Interface → ESI; Dry temp → 350C; Nebulizing pressure → 60 psi; Dry gas flow → 10 L/min; Ionisation mode → negative; capillary voltage → +4500V; End plate offset → −500V while the separation column was a Waters Sunfire C18, 5 μm, 4.6 × 150 mm column (Supplier: Waters, Dublin, Ireland) with an operational temperature of 30C.
From the results obtained in this study, seven different PFCs (i.e. PFHpA, PFDoA, PFNA, PFUA, PFDeA, PFOA and PFOS), were detected in raw and treated water with PFOA and PFOS being the least detected PFCs as they were detected only in raw water (PFOA) from Faure, as well as raw and treated water (PFOS) from Brooklands. The highest concentration observed in treated water was for PFHpA, which was quantified at a maximum average concentration of 43.80 ng/L (Plattekloof). The maximum average concentrations of other PFCs detected were as follows: PFDoA - 4.415 ng/L for Faure raw water; PFNA - 2.922 ng/L for Plattekloof outlet; PFUA - 7.965 ng/L for Brooklands treated water and PFDeA - 2.744 ng/L for Faure raw water. Another observation from the results was that the concentration of the majority of the PFCs detected in treated water was higher than that quantified in raw water, suggesting possible contamination by materials used during water treatment.
In conclusion, THMs detected in treated water from various DWTPs and one DWDS in the Western Cape met the required local and international drinking water quality guidelines, while the presence of PFOS, PFOA, PFHpA, PFDoA, PFNA, PFUA and PFDeA in treated water requires that local water professionals continue to monitor their presence to ensure that measures for their reduction are in place. Furthermore, the National standards (SANS 241) for municipal drinking water guidelines must be updated to include the monitoring of PFCs, including the lesser known and less studied PFCs such as PFHpA, PFDoA, PFNA, PFUA and PFDeA.
|
Page generated in 0.0566 seconds