Spelling suggestions: "subject:"peripheral nervous system "" "subject:"eripheral nervous system ""
81 |
A Comparative Analysis of Local and Global Peripheral Nerve Mechanical Properties During Cyclical Tensile TestingDoering, Onna Marie 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Understanding the mechanical properties of peripheral nerves is essential for chronically implanted device design. The work in this thesis aimed to understand the relationship between local deformation responses to global strain changes in peripheral nerves. A custom-built mechanical testing rig and sample holder enabled an improved cyclical uniaxial tensile testing environment on rabbit sciatic nerves (N=5). A speckle was placed on the surface of the nerve and recorded with a microscope camera to track local deformations. The development of a semi-automated digital image processing algorithm systematically measured local speckle dimension and nerve diameter changes. Combined with the measured force response, local and global strain values constructed a stress-strain relationship and corresponding elastic modulus. Preliminary exploration of models such as Fung and 2-Term Mooney-Rivlin confirmed the hyperelastic nature of the nerve. The results of strain analysis show that, on average, local strain levels were approximately five times smaller than globally measured strains; however, the relationship was dependent on global strain magnitude. Elastic modulus values corresponding to ~9% global strains were 2.070 ± 1.020 MPa globally and 10.15 ± 4 MPa locally. Elastic modulus values corresponding to ~6% global strains were 0.173 ± 0.091 MPa globally and 1.030 ± 0.532 MPa locally.
|
82 |
Novel Carbon-Nanotube Based Neural Interface for Chronic Recording of Glossopharyngeal Nerve ActivityKostick, Nathan H. 01 June 2018 (has links)
No description available.
|
83 |
La formation de synapses par les neurones périphériques sur des surfaces synthétiquesMa, Xiya 08 1900 (has links)
No description available.
|
84 |
On the Role of, and Intervention in, Oxygen-Conserving Reflexes in Sudden Unexpected Death in EpilepsyEthan N Biggs (13199502) 04 August 2022 (has links)
<p>Sudden unexpected death in epilepsy (SUDEP) is a fatal complication of epilepsy that kills 1̃2 of every 10,000 epileptic patients every year. SUDEP has proven difficult to study because it frequently occurs unobserved and cannot be predicted. What limited clinical data exists suggests that SUDEP occurs as a cardiorespiratory collapse immediately following a seizure. In this work, I explore how a group of autonomic reflexes termed collectively as “oxygen‐conserving reflexes (OCRs)” lead to sudden death when activated during seizures. I also demonstrate multiple physiological parallels between the OCR‐mediated deaths that I report and the clinical data on cases of human SUDEP. Additionally, I explore the neural pathway underlying OCRs, identify the carotid body as a potential target for intervention, and demonstrate the efficacy of electroceutical intervention in reducing the mortality risk of OCR activation during seizures. This work seeks to both offer a neural explanation for SUDEP as well as present a promising target and means for potential intervention.</p>
|
Page generated in 0.0589 seconds