• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 11
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 56
  • 29
  • 29
  • 16
  • 15
  • 13
  • 11
  • 11
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Consequences of maternal obesity on vascular contractility and perivascular adipose tissue regulation of resistance artery tone in rats

Zaborska, Karolina Emilia January 2016 (has links)
Background: Maternal obesity pre-programme offspring to develop obesity and associated cardiovascular disease later in life. In health, perivascular adipose tissue (PVAT) reduces vascular contractility, an effect lost in obesity and during pregnancy. However, neither the effect of obesity during pregnancy on PVAT function in the mothers nor the possible epigenetic effect in the offspring is known. This study sought to identify detrimental vascular changes in post-partum dams and their offspring resulting from maternal obesity. Methods: Six-eight week old female Sprague-Dawley rats were fed a 10% fat (control) or 45% fat diet (HFD) for 12 weeks before mating, throughout pregnancy and during lactation. Offspring received the control diet until sacrifice at 12 (12wo) or 24 (24wo) weeks of age. PVAT-denuded (with or without exogenous PVAT) and PVAT-intact mesenteric arteries from mothers and pups were mounted on a wire myograph and vascular contractility to thromboxane A2 agonist (U46619) and norepinephrine was assessed in the presence of pharmacological tools. Western blotting, immunoprecipitation and an AMPK activity assay were used to detect any changes in the PVAT environment. Results: Offspring of obese mothers were overweight, mildly hypertensive and insulin resistant. Contractions in PVAT-denuded arteries from HFD dams and their offspring were reduced by a mechanism involving increased protein O-GlcNAcylation. PVAT exerted an anti-contractile effect in vessels from control offspring and their mothers through the release of relaxant factors, which included nitric oxide (NO). The anti-contractile effect of PVAT was lost in HFD offspring due to reduced NO bioavailability and increased O-GlcNAcylation, which lead to decreased AMPK activity within PVAT. However, simultaneous AMPK activation within PVAT partially restored the anti-contractile capability in HFD offspring. Reduced NO bioavailability also lead to PVAT dysfunction in HFD mothers. Conclusions: Elevated insulin levels in the HFD offspring may lead to enhanced glucose uptake and increased protein O-GlcNAcylation, which contributes to the PVAT dysfunction in HFD offspring. The PVAT dysfunction, which is associated with reduced NO bioavailability in HFD mothers and their offspring may be the result of reduced AMPK phosphorylation of nitric oxide synthase within PVAT.
12

Perivascular adipose tissue and vessel contractility in health and obesity

Aghamohammadzadeh, Reza January 2014 (has links)
White adipocytes surround almost all blood vessels in the human body. It was thought previously that these cells merely provide mechanical support for the adjacent small vessels and are little more than fat storage units. Recent studies have identified these cells as metabolic and vasoactive engines that produce and secrete molecules that can affect the function of their adjacent small vessels. The adipocytes and a number of other cell types (including inflammatory cells) surrounding the vessels are collectively termed the PeriVascular Adipose Tissue (PVAT). Work from our group has shown previously that, in health, PVAT conveys a vasorelaxant effect on adjacent small arteries and that this effect is not observed in obesity thus the vessels must exist at an elevated level of basal tone. It is plausible that increased basal vessel constriction can explain the elevated blood pressure amongst the obese population and a better understanding of the obesity-induced PVAT damage may lead to clues to a new approach in the treatment of the condition which burdens its sufferers with a greater cardivascular risk profile. In this thesis we have studied individuals with morbid obesity at baseline and six months following surgery and observed that PVAT function following dramatic weight loss restores the PVAT vasorelaxant effect close to that observed in lean patients. Moreover, we have concluded that inflammation plays a significant role in this process and indeed using protocols with antioxidant enzymes we were able to restore the damaged PVAT function at baseline. We have have shown also that in health, PVAT vasorelaxant function is independent of the endothelium, and that obesity-induced PVAT damage and its reversal following weight loss and ex-vivo anti-oxidant treatment are both independent of the endothelium and at least in part due to nitric oxide bioavailability. Finally, we have observed that in sleep apnoea, which often coexists with morbid obesity and hypertension, there is a greater degree of PVAT inflammation.
13

Investigating the Role of the Perivascular Niche on Glioma Stem Cell Invasion in a Three-Dimensional Microfluidic Tumor Microenvironment Model

January 2020 (has links)
abstract: Glioblastoma Multiforme (GBM) is a grade IV astrocytoma and the most aggressive form of cancer that begins within the brain. The two-year average survival rate of GBM in the United States of America is 25%, and it has a higher incidence in individuals within the ages of 45 - 60 years. GBM Tumor formation can either begin as normal brain cells or develop from an existing low-grade astrocytoma and are housed by the perivascular niche in the brain microenvironment. This niche allows for the persistence of a population of cells known as glioma stem cells (GSC) by supplying optimum growth conditions that build chemoresistance and cause recurrence of the tumor within two to five years of treatment. It has therefore become imperative to understand the role of the perivascular niche on GSCs through in vitro modelling in order to improve the efficiency of therapeutic treatment and increase the survival rate of patients with GBM. In this study, a unique three dimensional (3D) microfluidic platform that permitted the study of intercellular interactions between three different cell types in the perivascular niche of the brain was developed and utilized for the first time. Specifically, human endothelial cells were embedded in a fibrin matrix and introduced into the vascular layer of the microfluidic platform. After spontaneous formation of a vascular layer, Normal Human Astrocytes and Patient derived GSC were embedded in a Matrigel® matrix and incorporated in the stroma and tumor regions of the microfluidic device respectively. Using the established platform, migration, proliferation and stemness of GSCs studies were conducted. The findings obtained indicate that astrocytes in the perivascular niche significantly increase the migratory and proliferative properties of GSCs in the tumor microenvironment, consistent with previous in vivo findings. The novel GBM tumor microenvironment developed herein, could be utilized for further in-depth cellular and molecular level studies to dissect the influence of individual factors within the tumor niche on GSCs biology, and could serve as a model for developing targeted therapies. / Dissertation/Thesis / Masters Thesis Biomedical Engineering 2020
14

Role of perivascular oligodendrocyte precursor cells in angiogenesis after brain ischemia / 脳虚血後の血管新生における血管周囲のオリゴデンドロサイト前駆細胞の役割

Kishida, Natsue 24 September 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22040号 / 医博第4525号 / 新制||医||1038(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 高橋 淳, 教授 伊佐 正, 教授 渡邉 大 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
15

In Vitro Characterization Of Simvastatin Loaded Microspheres In The PolyRing Device

Vishwanathan, Anusha 12 May 2008 (has links)
No description available.
16

Examining Cellular Interactions and Response to Chemotherapy in The Glioblastoma Perivascular Niche

Hatlen, Rosalyn Rae 17 January 2023 (has links)
Glioblastoma multiforme (GBM) is the most deadly and common form of brain cancer and is responsible for over 50% of adult brain tumors. A specific region within the GBM environment is known as the perivascular niche (PVN). We have designed a 3D in vitro model of the PVN comprised of either collagen Type 1 or HyStem-C®, human umbilical vein endothelial cells (HUVECs) or human brain microvascular endothelial cells (HBMECs), and LN229 (GBM) cells. A synergistic response between HUVECs and LN229 cells was observed in co-culture, including 10 – 16-fold increased cell proliferation, a decrease in the height of hydrogels of up to 68%, as well as elevated secretion of TGF-β and CXCL12 up to 2.6-fold from Day 8 to 14. These trends correlated with cell colocalization, indicating a chemotactic role for CXCL12 in enabling the migration of LN229 cells towards HUVECs in co-cultures. Von Willebrand factor (vWF) was co-expressed with glial fibrillary acidic protein (GFAP) in up to 40% of LN229 cells after 14 days in co-culture in collagen (2.2 mg/mL) and HyStem-C® gels. The expression of vWF indicates the early stages of trans-differentiation of LN229 cells to an endothelial cell phenotype. We then investigated the effect of chemotherapeutic drugs temozolomide (TMZ) and Avastin® on EC networks, LN229 cell morphology and alignment, cytotoxicity, colocalization, and trans-differentiation. TMZ was observed to primarily affect LN229 cells, with treatment at high concentrations resulting in up to 2.3-fold reduced alignment as well as an increase in cell circularity. Cytotoxicity of up to 94% was also observed up to in LN229 monocultures, and was significantly higher in collagen (1.1 mg/mL) gels. Avastin® treatment resulted in changes to ECs. Network features were significantly reduced and EC cellular proliferation decreased up to 69% with Avastin® treatment. Significant increases in percentages of colocalized and GFAP+/vWF+ cells were also observed when treated with 8 µg/mL Avastin®. This suggests that chemotactic signaling may have been altered. TGF-β secretion was reduced in co-cultures when 150 µM TMZ or 8 µg/mL Avastin® were administered. / Doctor of Philosophy / Glioblastoma (GBM) is the most common and deadly form of brain cancer and is responsible for over 50% of adult brain tumors. A specific region within the GBM environment of particular interest is located near the vasculature, known as the perivascular niche (PVN). We have designed a 3D in vitro model of the PVN consisting of either collagen type 1 or HyStem-C®, a material made of primarily hyaluronic acid. Human umbilical vein endothelial cells (HUVECs), an immortalized cell line, or primary human brain microvascular endothelial cells (HBMECs) as well as LN229 (GBM) cells were used. A synergistic response was observed between HUVECs and LN229 cells in co-culture, including changes to the extracellular matrix, and signaling factor secretion. Further supporting this data, colocalization between LN229 cells and HUVECs was observed. Colocalization is a phenomenon where two cell types come into physical contact after one moves toward another. This indicated preferential migration, specifically in response to CXCL12. Endothelial cell marker von Willebrand factor (vWF) was co-expressed with glial fibrillary acidic protein (GFAP), commonly used to identify GBM cells. This percentage was increased in co-cultures with HBMECs, pointing to differences in the response of primary cells to immortalized cell lines. The expression of vWF indicates the early stages of trans-differentiation of LN229 cells to an endothelial cell phenotype. We then investigated the effect of chemotherapeutic drugs temozolomide (TMZ) and Avastin® in the PVN model. TMZ was observed to primarily affect LN229 cells, by reducing their alignment as well as causing cell death. Avastin® treatment resulted in changes to ECs. Networks and cell growth were significantly reduced after Avastin® treatment. When either TMZ or Avastin® was administered, the secretion of TGF-β, was reduced.
17

Disfunção mitocondrial no tecido adiposo perivascular e seu papel nas alterações vasculares em modelo experimental de obesidade / Mitochondrial dysfunction in perivascular adipose tissue and its role in obesity-associated vascular changes

Rafael Menezes da Costa 18 December 2015 (has links)
A obesidade desencadeia mudanças estruturais e funcionais no tecido adiposo perivascular (PVAT), levando a um desequilíbrio em favor de substâncias vasoconstritoras e pró- inflamatórias, bem como alterações em suas vias de sinalização no vaso. Um importante mecanismo proposto para explicar a perda do efeito anticontrátil do PVAT na obesidade é o estresse oxidativo. Espécies reativas de oxigênio (EROs) possuem papel importante na modulação da função vascular mediada pelo PVAT. Considerando que a mitocôndria representa fonte potencial de EROs nas células, o presente estudo testou a hipótese que a disfunção mitocondrial no PVAT está envolvida na perda do efeito anticontrátil do PVAT em modelo experimental de obesidade. Este estudo avaliou se a matriz mitocondrial nas células que compõem o tecido adiposo periaórtico representa fonte importante de EROs, e se as mesmas contribuem para as alterações na regulação, pelo PVAT, da reatividade vascular. Nosso estudo demonstrou que animais obesos apresentaram disfunção vascular e perda do efeito anticontrátil do PVAT. O estresse oxidativo está envolvido na disfunção do PVAT, com participação significativa da mitocôndria na geração de EROs, capazes de modular a reatividade vascular. A obesidade favoreceu a disfunção mitocondrial, reduzindo o consumo de oxigênio. Estes eventos favoreceram o aumento na geração de peróxido de hidrogênio mitocondrial no PVAT, o qual prejudica a ação anticontrátil deste tecido por ser ativador direto da via de contração RhoA/Rho cinase / Obesity promotes structural and functional changes in the perivascular adipose tissue (PVAT), favoring the release of vasoconstrictor and proinflammatory substances, as well as altering the vascular signaling pathways activated by PVAT-derived factors. Oxidative stress is an important mechanism proposed to explain the loss of anticontractile effects of the PVAT in obesity. Reactive oxygen species (ROS) play an important role in the modulatory effects of PVAT on vascular function. Considering that mitochondria are a potential source of ROS in the cells, the present study tested the hypothesis that mitochondrial dysfunction leads to the loss of the anticontractile effects of PVAT in obesity. We evaluated whether the mitochondrial matrix of the cells that make up the periaortic fat tissue constitute a major source of ROS, and if mROS contribute to defective regulation of vascular reactivity by the PVAT. Our study shows that obese animals exhibit vascular dysfunction and loss of anticontractile effects of PVAT. Oxidative stress is involved in PVAT dysfunction, with a significant contribution of mitochondria to ROS generation. Obesity promotes mitochondrial dysfunction, reducing oxygen consumption. These events increase the generation of mitochondrial hydrogen peroxide in the PVAT, which impairs the anticontractile effects of this tissue via direct activation of the RhoA / Rho kinase pathway
18

Disfunção mitocondrial no tecido adiposo perivascular e seu papel nas alterações vasculares em modelo experimental de obesidade / Mitochondrial dysfunction in perivascular adipose tissue and its role in obesity-associated vascular changes

Costa, Rafael Menezes da 18 December 2015 (has links)
A obesidade desencadeia mudanças estruturais e funcionais no tecido adiposo perivascular (PVAT), levando a um desequilíbrio em favor de substâncias vasoconstritoras e pró- inflamatórias, bem como alterações em suas vias de sinalização no vaso. Um importante mecanismo proposto para explicar a perda do efeito anticontrátil do PVAT na obesidade é o estresse oxidativo. Espécies reativas de oxigênio (EROs) possuem papel importante na modulação da função vascular mediada pelo PVAT. Considerando que a mitocôndria representa fonte potencial de EROs nas células, o presente estudo testou a hipótese que a disfunção mitocondrial no PVAT está envolvida na perda do efeito anticontrátil do PVAT em modelo experimental de obesidade. Este estudo avaliou se a matriz mitocondrial nas células que compõem o tecido adiposo periaórtico representa fonte importante de EROs, e se as mesmas contribuem para as alterações na regulação, pelo PVAT, da reatividade vascular. Nosso estudo demonstrou que animais obesos apresentaram disfunção vascular e perda do efeito anticontrátil do PVAT. O estresse oxidativo está envolvido na disfunção do PVAT, com participação significativa da mitocôndria na geração de EROs, capazes de modular a reatividade vascular. A obesidade favoreceu a disfunção mitocondrial, reduzindo o consumo de oxigênio. Estes eventos favoreceram o aumento na geração de peróxido de hidrogênio mitocondrial no PVAT, o qual prejudica a ação anticontrátil deste tecido por ser ativador direto da via de contração RhoA/Rho cinase / Obesity promotes structural and functional changes in the perivascular adipose tissue (PVAT), favoring the release of vasoconstrictor and proinflammatory substances, as well as altering the vascular signaling pathways activated by PVAT-derived factors. Oxidative stress is an important mechanism proposed to explain the loss of anticontractile effects of the PVAT in obesity. Reactive oxygen species (ROS) play an important role in the modulatory effects of PVAT on vascular function. Considering that mitochondria are a potential source of ROS in the cells, the present study tested the hypothesis that mitochondrial dysfunction leads to the loss of the anticontractile effects of PVAT in obesity. We evaluated whether the mitochondrial matrix of the cells that make up the periaortic fat tissue constitute a major source of ROS, and if mROS contribute to defective regulation of vascular reactivity by the PVAT. Our study shows that obese animals exhibit vascular dysfunction and loss of anticontractile effects of PVAT. Oxidative stress is involved in PVAT dysfunction, with a significant contribution of mitochondria to ROS generation. Obesity promotes mitochondrial dysfunction, reducing oxygen consumption. These events increase the generation of mitochondrial hydrogen peroxide in the PVAT, which impairs the anticontractile effects of this tissue via direct activation of the RhoA / Rho kinase pathway
19

Tratamento crônico com losartana corrige a disfunção do tecido adiposo perivascular em camundongos obesos. / Chronic treatment with losartan corrects the dysfunction of perivascular adipose tissue in obese mice.

Hashimoto, Carolina Midori 06 September 2016 (has links)
O tecido adiposo perivascular (PVAT) da aorta torácica (AT) possui ação anticontrátil (AC). O PVAT da AT e das artérias mesentéricas de resistência (AM) possuem diferentes características. Na obesidade ocorre expansão do PVAT. Nós avaliamos a modulação da contração pelo PVAT da AT e AM em camundongos controles (CT) e obesos (OB) e a participação do sistema renina-angiotensina (SRA), por meio do tratamento com antagonista do receptor AT1 (BRA). PVAT da AT e AM apresentaram ação AC. Ação AC do PVAT das AM, mas não da TA, foi abolida no grupo OB. BRA resgatou a ação AC do PVAT das AM no grupo OB, que foi abolida pelo antagonismo do receptor AT2 e pela inibição da óxido nítrico (NO) sintase (NOS). Em AM, a expressão dos receptores AT1 e AT2 não foi modificada e da NOS endotelial foi aumentada em AM e reduzida no PVAT da AM no grupo OB. BRA aumentou a expressão da eNOS no PVAT das AM nos dois grupos. Assim, concluímos que a obesidade induz disfunção do PVAT de AM e há envolvimento do SRA. BRA corrige a função do PVAT de AM por mecanismo dependente do receptor AT2 e NO. / The perivascular adipose tissue (PVAT) of thoracic aorta (TA) has an anticontractile (AC) action. TA and resistance mesenteric arteries (MA) PVAT have different characteristics. Expansion of PVAT occurs in obesity. We evaluated the modulation of contraction by PVAT of TA and MA in control (CT) and obese (OB) mice and the participation of the renin-angiotensin system (RAS), by treating mice with AT1 receptor antagonist (ARB). PVAT of both TA and MA showed an AC action. The AC action of MA PVAT, but of TA PVAT, was abolished in the OB group. ARB recovered the AC action of MA PVAT in OB group, which was abolished by both AT2 receptor antagonism and nitric oxide (NO) synthase (NOS) inhibition. In MA, the expression of AT1 and AT2 receptors was not changed and the expression of eNOS was increased in MA and reduced in MA PVAT of OB group. ARB increased the expression of eNOS in MA PVAT in both CT and OB groups. In conclusion, obesity induced MA PVAT dysfunction, in which RAS is involved. ARB recovered the MA PVAT function by mechanisms that depend on the AT2 receptor and NO.
20

Avaliação da influência do tecido adiposo perivascular (PVAT) na reatividade vascular da aorta de ratos com insuficiência cardíaca submetidos ao treinamento físico aeróbio e resistido. / Evaluation of the influence of perivascular adipose tissue on the vascular reactivity of the aorta of rats with heart failure submitted to aerobic and resistance training.

Fontes, Milene Tavares 15 February 2019 (has links)
O tecido adiposo perivascular (PVAT) libera substâncias dilatadoras e constritoras, sendo que as dilatadoras se sobrepõem, exercendo efeito anticontrátil. Esse efeito está prejudicado na presença de algumas doenças cardiovasculares. Na insuficiência cardíaca (IC) ocorrem danos ao sistema vascular, todavia nenhum estudo avaliou a função do PVAT na IC. A utilização do treinamento físico (TF) tem sido recomendada com terapia não farmacológica eficiente em promover benefícios ao sistema cardiovascular. As recomendações sugerem que o exercício resistido seja adicionado aos programas de TF para pacientes com IC, podendo, assim, o treinamento combinado (TC; aeróbio e resistido) fornecer benefícios adicionais à saúde cardiovascular. Com isso, o objetivo do presente trabalho foi avaliar o papel do PVAT na reatividade vascular da aorta torácica dos ratos com IC e, após, avaliar a influência do TC na resposta anticontrátil do PVAT da aorta torácica e abdominal de ratos saudáveis e com IC. Ratos Wistar foram submetidos à oclusão da artéria coronária descendente ou falso operado (SO). Após 4 semanas, para o estudo sem TC os animais foram mantidos sem intervenção, e para o estudo que envolvia o TC foram divididos em sedentários (SOs e ICs) e treinados (SOt e ICt, esteira e escada, 5 x/sem., 8 sem.). Anéis da aorta torácica e/ou abdominal com (E+) e sem endotélio (E-), na presença (PVAT+) ou na ausência do PVAT (PVAT-), foram montados em miógrafo de arame e curvas concentração-resposta à fenilefrina (FEN, 10-910-5M) foram realizadas. A IC promoveu aumento da contração FEN nos anéis E+/PVAT- da aorta torácica quando comparado aos SO, e o efeito anticontrátil do PVAT foi prejudicado pela IC nos anéis E+/PVAT+ e E-/PVAT+. O prejuízo no efeito anticontrátil do PVAT foi acompanhado por maior atividade da ECA1 e da expressão dos AT1R, AT2R e MASR no PVAT dos animais com IC. O antagonismo dos AT1R, AT2R e MASR promoveram redução da resposta contrátil nos anéis E+/PVAT- nos IC, nos anéis E+/PVAT+ essa redução foi superior apenas para o antagonismo do AT1R e AT2R. A produção de espécies reativas de oxigênio (ERO) na aorta torácica e PVAT dos animais IC foi maior que nos SO, acompanhada por uma menor biodisponibilidade de NO. O TC aumentou a capacidade física nos SOt e ICt. Na aorta torácica o TC reverteu parte do prejuízo da função anticontrátil do PVAT, aumentou a expressão do PRDM-16 e ESPST-1 que estavam reduzidos na IC, além disso, melhorou a biodisponibilidade de NO no PVAT pela maior expressão da eNOS, β3-AR e AMPk1/2α, aumentou a concentração de adiponectina e reduziu marcadores pró-inflamatórios. Na aorta abdominal, o efeito anticontrátil do PVAT não estava presente e o TC reverteu a disfunção endotelial dos animais com IC, aumentando a biodisponibilidade de NO e a expressão da eNOS na aorta. Em conclusão, na IC os AT1R e AT2R contribuem tanto para a disfunção endotelial quanto do PVAT, reduzindo a biodisponibilidade de NO e aumentando a produção de ERO. O TC melhorou a função anticontrátil na aorta torácica, por benefícios na via de sinalização α3-AR/Adiponectina/AMPK/eNOS, modificando o perfil morfológico e inflamatório do PVAT. Já na aorta abdominal, o TC melhorou a função vascular, aumentando a biodisponibilidade de NO. / Perivascular adipose tissue (PVAT) releases dilating and constricting substances, and the dilators overlap, exerting an anti-contractile effect. This effect is impaired in the presence of some cardiovascular diseases. In heart failure (HF) damage to the vascular system occurs, however, no study has evaluated the function of PVAT in HF. The use of physical training (PT) has been recommended with non-pharmacological therapy effective in promoting cardiovascular system benefits. The recommendations suggest that resistance exercise be added to the PT programs for patients with HF, thus, combined training (CT, aerobic and resisted) may provide additional cardiovascular health benefits. The objective of the present study was to evaluate the role of PVAT in the vascular reactivity of the thoracic aorta of HF rats and, after that, to evaluate the influence of CT in the anti-contractile response of PVAT of the thoracic and abdominal aorta of healthy and HF rats. Wistar rats were submitted to descending coronary artery occlusion or false operated (SO). After 4 weeks, for the study without CT, the animals were kept without intervention, and for the study involving the CT were divided into sedentary (SOs and HFs) and trained (SOt and HFt, treadmill and ladder, 5 x/8 sem.). In the presence (PVAT+) or in the absence of the PVAT (PVAT-), thoracic and/or abdominal aorta with (E+) and without endothelium (E-), were mounted on wire myograph and concentration-response curves to phenylephrine, (PHE, 10-9-10-5M) were performed. HF promoted an increase in PHE contraction in the E+/PVAT- rings of the thoracic aorta when compared to SO, and the ani-contratile effect of PVAT was impaired by HF in the E+/PVAT+ and E-/PVAT+ rings. The impairment in the anti-contratile effect of PVAT was accompanied by increased activity of ECA1 and the expression of AT1R, AT2R and MASR in the PVAT of animals with HF. The AT1R, AT2R and MASR antagonism promoted a reduction of the contractile response in the E+/PVAT- rings in the HF, in the E+/PVAT+ rings, this reduction was superior only to the antagonism of AT1R and AT2R. The production of reactive oxygen species (ROS) in the thoracic aorta and PVAT of the HF animals was higher than in the SO, accompanied by a lower NO bioavailability. CT increased physical capacity in SOt and HFt. In the thoracic aorta CT reversed part of the impairment of PVAT anti-contratile function, increased the expression of PRDM-16 and ESPST-1 that were reduced in HF, in addition, it improved the bioavailability of NO in PVAT by the greater expression of eNOS, β3-AR and AMPk1/2 α, increased the concentration of adiponectin and reduced proinflammatory markers. In the abdominal aorta, the anti-contratile effect of PVAT was not present and CT reversed the endothelial dysfunction of HF animals, increasing NO bioavailability and eNOS expression in the aorta. In conclusion, in HF, AT1R and AT2R contribute to both endothelial and PVAT dysfunction, reducing NO bioavailability and increasing ROS production. CT improved the anti-contractile function in the thoracic aorta due to benefits in the β3-AR/Adiponectin/AMPK/eNOS signaling pathway, modifying the morphological and inflammatory profile of PVAT. Already in the abdominal aorta, the CT improved the vascular function, the CT improved the vascular function, increasing the bioavailability of NO.

Page generated in 0.4001 seconds