• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 186
  • 61
  • 42
  • 31
  • 20
  • 14
  • 14
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 414
  • 414
  • 205
  • 122
  • 119
  • 100
  • 99
  • 98
  • 96
  • 77
  • 66
  • 62
  • 60
  • 59
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Performance Assessment of Electrical Motor for Electric Aircraft Propulsion Applications : Evaluation of the Permanent Magnet Motor and its Limitations in Aircraft Propulsion

Beckman, Mathias, Christy Gerald Volden, Alex January 2019 (has links)
This thesis project will evaluate which kind of electrical motor is best suited for aircraft propulsion and which parameters effect the efficiency. An economic analysis was conducted, comparing the fuel price (Jet A1) for a gas turbine and the electricity price for an electric motor of 1MW. The study was conducted by using analytical methods in MATLAB. Excel was used to compile and present the data. The data used in this thesis project were assumed with regards to similar studies or pre-determined values. The main losses for the Permanent Magnet Synchronous Motor (PMSM) were calculated to achieve a deeper understanding of the most important parameters and how these parameters need to improve to allow for future electric propulsion systems. The crucial parameters for the losses were concluded to be the temperature, voltage level, electrical frequency, magnetic flux density, size of the rotor and rotational speed. The three main losses of a PMSM was illustrated through the analytical equations used in MATLAB. The calculations present how the ohmic losses depend on the temperature (0-230°C) at different voltages (700V and 1000V), how the core losses depend on frequency (0-1000Hz) at different magnetic flux densities and how the windage losses depend on rotational speed (7000-10000 rpm). It could be concluded that at 8500 rpm an efficiency of 91,26% could be achieved at 700V, 1.5T and 90.4% at 1000V, 1.65T. The decrease in efficiency is a result of the increase in magnetic flux density. When looking at the economic viability of electrical integration the power to weight ratio and energy price was compared for the gas turbine and electrical motor including an inverter and battery. This resulted in a conclusion that a pure electrical system may not compete with a gas turbine in 30 years of time due to the low energy density of the battery. It was also concluded that the emissions during cruise could be lowered significantly. If the batteries were charged in Sweden the emissions would decrease from ~937 kg CO2 to ~31 kg CO2. If the batteries were charged in the Nordic region the emissions would decrease to ~119kg CO2. However, if the batteries were to be charged in the US the carbon dioxide emission would be ~1084 kg CO2, which is an increase in CO2 emission compared to the gas turbine.
162

Modelling, simulation and analysis of low-cost direct torque control of PMSM using hall-effect sensors

Ozturk, Salih Baris 25 April 2007 (has links)
This thesis focuses on the development of a novel Direct Torque Control (DTC) scheme for permanent magnet (PM) synchronous motors (surface and interior types) in the constant torque region with the help of cost-effective hall-effect sensors. This method requires no DC-link sensing, which is a mandatory matter in the conventional DTC drives, therefore it reduces the cost of a conventional DTC of a permanent magnet (PM) synchronous motor and also removes common problems including; resistance change effect, low speed and integration drift. Conventional DTC drives require at least one DC-link voltage sensor (or two on the motor terminals) and two current sensors because of the necessary estimation of position, speed, torque, and stator flux in the stationary reference frame. Unlike the conventional DTC drive, the proposed method uses the rotor reference frame because the rotor position is provided by the three hall-effect sensors and does not require expensive voltage sensors. Moreover, the proposed algorithm takes the acceleration and deceleration of the motor and torque disturbances into account to improve the speed and torque responses. The basic theory of operation for the proposed topology is presented. A mathematical model for the proposed DTC of the PMSM topology is developed. A simulation program written in MATLAB/SIMULINK® is used to verify the basic operation (performance) of the proposed topology. The mathematical model is capable of simulating the steady-state, as well as dynamic response even under heavy load conditions (e.g. transient load torque at ramp up). It is believed that the proposed system offers a reliable and low-cost solution for the emerging market of DTC for PMSM drives. Finally the proposed drive, considering the constant torque region operation, is applied to the agitation part of a laundry washing machine (operating in constant torque region) for speed performance comparison with the current low-cost agitation cycle speed control technique used by washing machine companies around the world.
163

On Design and Analysis of a Novel Transverse Flux Generator for Direct-driven Wind Application

Svechkarenko, Dmitry January 2010 (has links)
This thesis deals with the analysis of a permanent magnet synchronous generator suited for direct-drivenwind turbines inmegawatt class. The higher specific torque and power density of a transverse flux permanent magnet machine in comparison to conventional radial-flux machines make it a promising solution for direct-driven wind turbine generators. The novel transverse flux generator investigated in this work would allow a better utilization of the available nacelle space due to its more compact construction. The major part of the thesis deals with the finite element analysis and analytical calculations of transverse flux generators. The computations are performed for single units of the basic transverse flux topology (BTFM) and the one utilizing iron bridges (IBTFM). As the selection of the pole length in a transverse flux machine affects the pole-to-pole flux leakage and thus its performance, the topologies have been analyzed with respect to the varying dimensions in the direction of movement. The topologies utilizing IBTFM have been found to be superior to the BTFM with respect to the flux linkage (by 110%) and utilization of the magnets (by 84%). The machines with longest magnets gave the largest flux linkage, while machines with short magnets should be preferred for better magnet utilization. The four sets of dimensions have been selected for a dynamic finite element analysis. The power factor is evaluated for the topologies with the varying dimensions in the peripheral plane in static finite element analysis. The performance of the topologies with the best power factor in the studied range (0.62 in the BTFM and 0.57 in the IBTFM), as well as the topologies that give the highest power factor to magnet volume ratio, is compared with the dynamic simulations.The electromagnetic and cogging forces of the transverse-flux generator are estimated. The IBTFM is superior to the BTFM with respect to the force production, where the three-phase electromagnetic force is twice as large as in the BTFM. The force ripples of the three-phase electromagnetic force are found to be insignificant in both topologies. An analytical procedure based on the results from the finite element simulations is applied for evaluation of the transverse flux generators with different shapes and topologies. The effectiveness of each topology is investigated based on the estimation of the torque production in a certain nacelle volume. A toroidal generator with the iron-bridge topology is the most compact alternativefor a wind turbine as it has the highest torque-per-volume ratio. Furthermore, the analyticalmodel, including evaluation of the synchronous inductance, is developed and compared with the results obtained in the threedimensional finite element analysis. Themodel provides a good agreement for the studied set of dimensions. / QC 20101109
164

Magnetic Machines for Microengine Power Generation

Arnold, David Patrick 21 November 2004 (has links)
This dissertation presents an investigation of miniaturized magnetic induction and permanent magnet (PM) machines, intended for use in a microengine. Similar to a macroscale turbogenerator, a microengine comprises a small, gas-fueled turbine engine for converting chemical fuel energy into mechanical power and an integrated electrical generator for converting mechanical power to electrical power. The microengine system is proposed as a revolutionary, high power-density source for portable electronics. In this research, miniaturized magnetic induction machines and PM machines were designed, fabricated, and characterized. Both types of machines used axially directed magnetic fields and were nominally 10 mm in diameter and 1.5-2.3 mm in thickness. Innovative microfabrication techniques were developed to demonstrate the feasibility of integrating magnetic machines within a bulk-micromachined, silicon-based microengine system. Two-phase, eight-pole induction machines were constructed within silicon substrates using Cu coils in a laminated, slotted ferromagnetic NiFe or CoFeNi stator core. Silicon etching, wafer bonding, and electrodeposition were used to form all of the magnetic machine components. The induction machines were characterized in motoring mode using tethered rotors and demonstrated motoring torques of up to 2.5 uN-m. Also, three-phase, eight-pole, surface wound PM machines were built using a hybrid microfabrication/assembly approach. The stators were fabricated by electroplating Cu coils on ferromagnetic NiFeMo (Moly Permalloy) substrates. The rotors were formed by assembling a magnetically patterned SmCo PM with a FeCoV (Hiperco 50) back iron. The PM machines were tested as generators with free-spinning rotors, powered by an air-driven spindle, and demonstrated 2.6 W of mechanical-to-electrical power conversion with continuous DC power generation of 1.1 W at 120 krpm rotor speed. The primary contributions of this work are (1) the demonstration of microfabricated magnetic machines integrated within bulk-micromachined silicon and (2) the demonstration of multi-watt power conversion from a microfabricated PM generator. These achievements represent progress in the ongoing development of silicon-based microengines, but in addition, the fabrication technologies and device structures may find application in other microsystems.
165

Developing of Robust Integral Velocity-stabilizing Controller for Permanent Magnet Synchronous Motor Driver

Lai, Chun-Ting 14 February 2012 (has links)
The objective of this thesis is to design and implement a velocity-stabilizing driver for permanent magnet synchronous motor. The research presents how to achieve high efficiency in stabilizing overall velocity for a permanent magnet synchronous motor. In order to drive the integral system, there are six steps square-wave starting device, sine-wave driver, estimation of magnetic angle, velocity feedback and current feedback control circuits designed. A test platform is built by Microchip-made dsPIC33FJ128MC804 digital signal processor used as a control core. ¡§Simulink¡¨ simulator is used during the laboratory test. The simulation results are compared with those of experiments in order to verify the achievement of excellent performance of Robust Integral Velocity-stabilizing Controller on Permanent Magnet Synchronous Motor Driver.
166

Design and Implementation of an Inverter Drive for High-Efficiency Compressor used in Air Conditioner

TSENG, WEI-CHIH 11 July 2002 (has links)
Abstract: This paper presents the results of an experimental investigation into the application of inverter-based variable speed drives to positive displacement rotary compressors. Designs and implements a DSP-microprocessor based of an inverter drive for high-efficiency compressor used in air conditioner. We control the compressor with sine PWM and V/F scheme. Permanent magnet synchronous motor has potential for energy saving in general applications on compressor drives. Permanent magnet synchronous motor drives are used for applications like compressors¡Awhere high dynamic performance is not a demand¡Asimple V/F control strategies may be sufficient to obtain the required control performance. For energy saving to find the best control strategy for an inverter drive for high efficiency compressor used in air conditioner.
167

Modelling, simulation and analysis of low-cost direct torque control of PMSM using hall-effect sensors

Ozturk, Salih Baris 25 April 2007 (has links)
This thesis focuses on the development of a novel Direct Torque Control (DTC) scheme for permanent magnet (PM) synchronous motors (surface and interior types) in the constant torque region with the help of cost-effective hall-effect sensors. This method requires no DC-link sensing, which is a mandatory matter in the conventional DTC drives, therefore it reduces the cost of a conventional DTC of a permanent magnet (PM) synchronous motor and also removes common problems including; resistance change effect, low speed and integration drift. Conventional DTC drives require at least one DC-link voltage sensor (or two on the motor terminals) and two current sensors because of the necessary estimation of position, speed, torque, and stator flux in the stationary reference frame. Unlike the conventional DTC drive, the proposed method uses the rotor reference frame because the rotor position is provided by the three hall-effect sensors and does not require expensive voltage sensors. Moreover, the proposed algorithm takes the acceleration and deceleration of the motor and torque disturbances into account to improve the speed and torque responses. The basic theory of operation for the proposed topology is presented. A mathematical model for the proposed DTC of the PMSM topology is developed. A simulation program written in MATLAB/SIMULINK® is used to verify the basic operation (performance) of the proposed topology. The mathematical model is capable of simulating the steady-state, as well as dynamic response even under heavy load conditions (e.g. transient load torque at ramp up). It is believed that the proposed system offers a reliable and low-cost solution for the emerging market of DTC for PMSM drives. Finally the proposed drive, considering the constant torque region operation, is applied to the agitation part of a laundry washing machine (operating in constant torque region) for speed performance comparison with the current low-cost agitation cycle speed control technique used by washing machine companies around the world.
168

Έλεγχος βήματος πτερυγίου σε ανεμογεννήτρια με σύγχρονη μηχανή μόνιμου μαγνήτη

Μοσχονά, Αναστασία 13 January 2015 (has links)
Η διαρκώς αυξανόμενη ζήτηση ηλεκτρικής ενέργειας, στους καιρούς μας, σε συνδυασμό με τη ραγδαία κλιματική αλλαγή, οδηγούν στην ανάγκη αναζήτησης οικονομικών, άφθονων και καθαρών πηγών για την παραγωγή της. Συνεπώς η αιολική ενέργεια κερδίζει έδαφος στις επιλογές των κρατών ανά τον κόσμο. Στην παρούσα διπλωματική θα αναλυθεί μια διάταξη ανεμογεννήτριας, η οποία αποτελείται από μια σύγχρονη μηχανή μόνιμου μαγνήτη (PMSG), έναν μετατροπέα συχνότητας (back-to-back converter) και ένα φίλτρο RL από την πλευρά του δικτύου. Με την επιλογή μας να χρησιμοποιήσουμε σύγχρονη μηχανή μόνιμου μαγνήτη κερδίζουμε σε αποδοτικότητα και αξιοπιστία. Σκοπός την εργασίας αυτής είναι αφενός η μελέτη και η ανάλυση του πλήρους συστήματος στο d-q στρεφόμενο σύστημα καθέτων αξόνων μέσω του μετασχηματισμού Park και αφετέρου η εφαρμογή του κατάλληλου σχεδιασμού ελέγχου, ώστε να επιτευχθεί η μέγιστη απομάστευευση ισχύος από τον άνεμο. Αυτό θα πραγματοποιηθεί λαμβάνοντας υπόψη τους περιορισμούς που θέτουν τα κατασκευαστικά χαρακτηριστικά της γεννήτριας και οι απαιτήσεις του δικτύου. Η προσομοίωση του συνολικού συστήματος θα γίνει στο περιβάλλον του Matlab/Simulink. Μέσω της προσομοίωσης αυτής θα προκύψουν οι αποκρίσεις των βασικών μεγεθών του συστήματος, από τα οποία θα εξαχθούν συμπεράσματα σχετικά με την ποιότητα των επιλογών μας. / The increasing demand for electricity, in our times, combined with the rapid climate change, leads to the need of economical, abundant and clean sources of production. Therefore, wind energy is gaining ground around the world. In this thesis a wind turbine topology will modeled and analyzed. It consists of a permanent magnet synchronous generator (PMSG), a frequency back-to-back converter and an RL filter from the network side. By using a permanent magnet synchronous generator the model becomes efficient and reliable. The initial purpose is studying an analyzing the complete system, using d-q rotating vertical shaft system with Park transformation. Implementation of the appropriate control design will follow, in order to achieve maximum wind power extraction. Constrains, which are posed by the generator contraction characteristics and network requirements, must and will be considered. The simulation of the complete system will take place in Matlab/Simulink computing environment. The responses of the fundamental units will be presented and valuated, in order to extract conclusions regarding the quality of different control methods.
169

External Reactive Power Compensation of Permanent Magnet Synchronous Generator

Singer, Amr 09 June 2011 (has links) (PDF)
This research work focuses on the reactive power compensation of the permanent magnet synchronous generator (PSG) in wind power plants. PSG feeds a fixed voltage dc grid through a rectifier bridge. In variable speed operation, the PSG will be able to build torque only in small speed range. This is due to the fixed magnet of the PSG. External reactive power compensation provides an attractive solution to overcome this problem. Different reactive power compensation configurations were examined. Statics synchronous series compensation and a shunt passive filter were chosen as a compensation method. Simulation and implementation of small wind power plant were performed. The wind power plant consists of the synchronous generator, inverter, rectifier, coupling transformers and shunt passive filter. The experimental results agree to the proposed theory and simulation results. / Der Schwerpunkt meiner Promotion ist die Blindleistungskompensation bei einem permanenterregten Synchrongenerator. Der Synchrongenerator speist das Gleichsspannungsnetz über ein Gleichrichter. In der Drehzahlvariablen Betriebsverhalten können Nachteile auftreten. Die Folge ist, dass bei konstanter Gleichspannung und fester Erregung durch die Permanenterregung nur ein sehr kleiner Drehzahlbereich mit vernünftiger Drehmomentausbeute bedienbar ist. Ein möglicher Ausweg wäre eine variable Kompensationsspannung. Verschiedene Kompensationsverfahren wurden untersucht. Ein Series Active Filter und ein Shunt Passive-Filter wurden als Blindleistungskompensation gewählt. Im Rahmen meiner Dissertation beschäftige ich mich mit dem Aufbau und der Simulation einer Windkraftanlage. Diese besteht aus einem permanenterregten Synchrongenerator, einem Wechselrichrter, einem Gleichrichter, drei Transformatoren und einem passiven Filter. Das Versuchsergebnis zeigt, dass die Theorie mit der Simulation übereinstimmt.
170

System Perspectives on Hydro-Kinetic Energy Conversion

Yuen, Katarina January 2012 (has links)
Free-flowing water currents such as tides and unregulated water courses could contribute to world electricity production given the emergence of robust technical solutions for extracting the energy. At Uppsala University, a concept for converting the energy in water currents to electricity using a vertical axis turbine with fixed blade-pitch and a direct-drive permanent magnet generator is studied. Technological equipment for extracting energy from water currents can be studied at desktop to some extent, but physical realizations, first in a laboratory setting, and later in a natural aquatic setting, are necessary. For this reason, a laboratory generator has been constructed and evaluated, and an experimental setup comprising turbine, generator and control system has been constructed. The turbine and generator are to be deployed in the Dalälven River in Söderfors, and operated from an on-land control station. The author has worked with constructing and evaluating the low-speed laboratory generator, participated in the design and construction of the Söderfors generator, and designed and constructed the control system for Söderfors. The generator design incorporates a low rotational speed, permanent magnets, and many poles, in order to adapt the generator to the nature of water currents. Simulations and experimental data for the laboratory prototype have been compared and show that the simulation tool used is adequate for design studies of this type of generator. The generator has also been shown to be able to operate with the intended turbine design and range of water velocities. The control system to be used in Söderfors has been tested in a laboratory environment. Simulations of the control system show that it should be able to operate the turbine and generator at the desired rotational speeds in water velocities up to about 1.8 m/s. Simulations of the system have also shown that maximizing system power output may not correspond with maximizing turbine power.

Page generated in 0.0811 seconds