Spelling suggestions: "subject:"peroxisome proliferator"" "subject:"peroxisome proliferators""
11 |
Développement d'une méthodologie robuste de sélection de gènes dans le cadre d'une activation pharmacologique de la voie PPARCotillard, Aurélie 03 December 2009 (has links) (PDF)
De part leur dimension élevée, les données de puces à ADN nécessitent l'application de méthodes statistiques pour en extraire une information pertinente. Dans le cadre de l'étude des différences entre deux agonistes de PPAR (Peroxisome Proliferator-Activated Receptor), nous avons sélectionné trois méthodes de sélection de variables : T-test, Nearest Shrunken Centroids (NSC) et Support Vector Machine – Recursive Feature Elimination. Ces méthodes ont été testées sur des données simulées et sur les données réelles de l'étude PPAR. En parallèle, une nouvelle méthodologie, MetRob, a été développée afin d'améliorer la robustesse ce ces méthodes vis à vis de la variabilité technique des puces à ADN, ainsi que leur reproductibilité. Cette nouvelle méthodologie permet principalement d'améliorer la valeur prédictive positive, c'est-à-dire la confiance accordée aux résultats. La méthode NSC s'est révélée la plus robuste et ce sont donc les résultats de cette méthode, associée à MetRob, qui ont été étudiés d'un point de vue biologique.
|
12 |
Functional Activation of Peroxisome Proliferator-Activated Receptor α (PPARα) by Environmental Chemicals in Relation to Their ToxicitiesAOYAMA, TOSHIFUMI, ITOHARA, SEIICHIRO, KAMIJIMA, MICHIHIRO, ICHIHARA, GAKU, NAKAJIMA, TAMIE 11 1900 (has links)
No description available.
|
13 |
Mechanisms of lipid droplet formation by conjugated linoleic acid (CLA) isomers and its effects on cell viabilityThiyam, Gayatri 10 January 2011 (has links)
The putative peroxisome proliferator-activated receptor (PPAR) α ligand, conjugated linoleic acid (CLA) induced cytoplasmic lipid droplet (LD) formation in H4IIE rat hepatoma cells. Currently, the mechanism(s) by which CLA isomers affects hepatic LD formation is unclear. We have investigated the role of PPARα and fatty acid (FA) activation in the regulation of hepatic LD formation induced by CLA isomers [cis-9,trans-11 (c9,t11), trans-10,cis-12 (t10,c12)] and linoleic acid (LA) in an in vitro model of lipid accumulation. Dose response of c9,t11 and t10,c12 CLA isomers as well as LA in quiescent H4IIE cells was assessed by Oil Red O staining and subsequent quantification after 24 hours. LD formation was induced by the CLA isomers similar to LA in a dose-dependent manner. However, treatment with the acyl CoA synthetase (ACS) inhibitor, triacsin C, resulted in significantly reduced LD formation. A similar reduction in lipid accumulation was observed with the PPARα activator, Wy14643. Furthermore, CLA isomers promoted H4IIE viability at 60 µM but decreased viability at a higher dose of 180 µM.
To further understand the role of PPARα in hepatic steatosis, we studied the level and phosphorylation of PPARα in livers of male lean and fa/fa Zucker rats fed either a control diet or fa/fa Zucker rats fed a CLA isomer (0.4% wt/wt c9,t11 or 0.4% wt/wt t10,c12) diet for 8 weeks. Immunoblotting results showed that only the t10,c12 CLA isomer significantly reduced phospho-PPARα S21 compared to the lean control (ln Ctl) and it was associated with a significant increase in the phosphorylation of p38 mitogen activated protein kinase (MAPK).These changes were not observed with the c9,t11 CLA isomer.
Taken together, we have shown that CLA isomers directly induce LD formation in quiescent H4IIEs by activation of the lipid storage pathway which was significantly reduced by triacsin C or Wy14643. Also, we demonstrate for the first time that only the t10,c12 CLA isomer significantly reduced PPARα phosphorylation while it increased p38 MAPK phosphorylation. These results indicate that the anti-steatotic effects of the t10,c12 CLA isomer is associated with changes in PPARα phosphorylation and thereby its activity in a MAPK-independent manner.
|
14 |
Mechanisms of lipid droplet formation by conjugated linoleic acid (CLA) isomers and its effects on cell viabilityThiyam, Gayatri 10 January 2011 (has links)
The putative peroxisome proliferator-activated receptor (PPAR) α ligand, conjugated linoleic acid (CLA) induced cytoplasmic lipid droplet (LD) formation in H4IIE rat hepatoma cells. Currently, the mechanism(s) by which CLA isomers affects hepatic LD formation is unclear. We have investigated the role of PPARα and fatty acid (FA) activation in the regulation of hepatic LD formation induced by CLA isomers [cis-9,trans-11 (c9,t11), trans-10,cis-12 (t10,c12)] and linoleic acid (LA) in an in vitro model of lipid accumulation. Dose response of c9,t11 and t10,c12 CLA isomers as well as LA in quiescent H4IIE cells was assessed by Oil Red O staining and subsequent quantification after 24 hours. LD formation was induced by the CLA isomers similar to LA in a dose-dependent manner. However, treatment with the acyl CoA synthetase (ACS) inhibitor, triacsin C, resulted in significantly reduced LD formation. A similar reduction in lipid accumulation was observed with the PPARα activator, Wy14643. Furthermore, CLA isomers promoted H4IIE viability at 60 µM but decreased viability at a higher dose of 180 µM.
To further understand the role of PPARα in hepatic steatosis, we studied the level and phosphorylation of PPARα in livers of male lean and fa/fa Zucker rats fed either a control diet or fa/fa Zucker rats fed a CLA isomer (0.4% wt/wt c9,t11 or 0.4% wt/wt t10,c12) diet for 8 weeks. Immunoblotting results showed that only the t10,c12 CLA isomer significantly reduced phospho-PPARα S21 compared to the lean control (ln Ctl) and it was associated with a significant increase in the phosphorylation of p38 mitogen activated protein kinase (MAPK).These changes were not observed with the c9,t11 CLA isomer.
Taken together, we have shown that CLA isomers directly induce LD formation in quiescent H4IIEs by activation of the lipid storage pathway which was significantly reduced by triacsin C or Wy14643. Also, we demonstrate for the first time that only the t10,c12 CLA isomer significantly reduced PPARα phosphorylation while it increased p38 MAPK phosphorylation. These results indicate that the anti-steatotic effects of the t10,c12 CLA isomer is associated with changes in PPARα phosphorylation and thereby its activity in a MAPK-independent manner.
|
15 |
Immunohepatotoxicity of the persistent environmental pollutants perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS)Rahman Qazi, Mousumi January 2011 (has links)
Perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS), manufactured for a variety of industrial and consumer applications, are ubiquitous environmental pollutants. Their accumulation in humans and wildlife raises serious health concerns. Here, we examined the potential effects of PFOA and PFOS on the innate immune system in mice. Short-term dietary exposure to high doses reduces the total number and subpopulations of circulating white blood cells. Moreover, production of proinflammatory cytokines by macrophages in the peritoneal cavity and bone marrow, but not in the spleen following exposure to in vitro or in vivo stimulation by bacterial lipopolysaccharides is enhanced. With respect to adaptive immunity, PFOS reduces the total numbers of thymocytes and splenocytes and subpopulations thereof in a dose dependent fashion. Furthermore, comparison of wild-type mice and the corresponding knock-out strain lacking peroxisome proliferator-activated receptor-alpha revealed that these immunological changes are partially dependent on this receptor. Our further studies also show that sub-chronic dietary exposure to an environmentally relevant dose of PFOS does not alter the cellularity of the thymus and spleen and exerts no influence on humoral immune responses. To facilitate examination of the effects of PFOA and PFOS on the hepatic immune system, we developed a procedure for mechanical disruption that yields a larger number of functionally competent immune cells from this organ. In our last study, lower doses of PFOA or PFOS induced hypertrophy of hepatocytes and altered the hepatic immune status. Thus, we find that short-term, high- and low-dose exposure of mice to these fluorochemicals is immunohepatotoxic. / Perfluorooktanat (PFOA) och perfluorooktansulfonat (PFOS) som tillverkas för många olika industri och konsumentprodukter, är globalt förekommande miljögifter. Deras ackumulering i människor och djur ger upphov till en stark oro för hälsoproblem. Vi har granskat effekterna av PFOA och PFOS på det medfödda, ospecifika immunförsvaret. Exponering för höga doser via maten under kort tid minskar det totala antalet cirkulerande vita blodkroppar samt delpopulationerna.. Immunsvaret ökar dock efter stimulering med bakteriella lipopolysaccharider både in vitro och in vivo , dvs produktionen av proinflammatoriska cytokiner av makrofager i bukhålan och benmärgen, men inte i mjälten ökar.. När det gäller adaptiv, specifik immunitet minskar PFOS det totala antalet tymocyter och splenocyter och deras olika subpopulationer. Vid exponering för lägre doser av PFOS induceras hepatomegali utan att påverka tymus eller mjälten. Vi kunde visa att peroxisomal proliferator-aktiverad receptor-alfa medierar effekterna utav PFOS i tymus samt delar av effekterna av PFOS i mjälten genom att använda möss som saknade denna receptor. . Dettastöds av vår studie med subkronisk exponering för en miljömässig dos av PFOS vilken inte ändrade den cellulära sammansättningen i vare sig tymus eller mjälte och inte hade något inflytande på det humorala immunsvaret. För att underlätta studier av hur PFOA och PFOS påverkar immunsystemet i levern utvecklade vi en metod för framrening av immunceller via mekanisk sönderdelning av levern, vilket gavett större antal av funktionella immunceller från detta organ. I vår sista studie kunde vi påvisa att lägre doser av PFOA eller PFOS inducerade hypertrofi av hepatocyter samt en påverkan av leverns immunförsvar.
|
16 |
Anti-cancer Effects of MW-03, a Novel Indole Compound, by Inducing 15-Hydroxyprostaglandin Dehydrogenase and Cellular Growth Inhibition in the LS174T Human Colon Cancer Cell Line.Seira, Naofumi, Yanagisawa, Naoki, Suganami, Akiko, Honda, Takuya, Wasai, Makiko, Regan, John W, Fukushima, Keijo, Yamaguchi, Naoto, Tamura, Yutaka, Arai, Takayoshi, Murayama, Toshihiko, Fujino, Hiromichi 10 1900 (has links)
Increases in the expression of prostaglandin E2 (PGE2) are widely known to be involved in aberrant growth in the early stage of colon cancer development. We herein demonstrated that the novel indole compound MW-03 reduced PGE2-induced cAMP formation by catalization to an inactive metabolite by inducing 15-hydroxyprostaglandin dehydrogenase through the activation of peroxisome proliferator-activated receptor-γ. MW-03 also inhibited colon cancer cell growth by arresting the cell cycle at the S phase. Although the target of MW-03 for cell cycle inhibition has not yet been identified, these dual anti-cancer effects of MW-03 itself and/or its leading compound(s) on colon cancer cells may reduce colon cancer development and, thus, have potential as a novel treatment for the early stage of this disease.
|
17 |
Studies on the identification and characterization of factors that regulate uncoupling protein 1 expression in beige adipocytes / ベージュ脂肪細胞における脱共役タンパク質1発現調節因子の同定と機能解析に関する研究Iwase, Mari 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第22510号 / 農博第2414号 / 新制||農||1078(附属図書館) / 学位論文||R2||N5290(農学部図書室) / 京都大学大学院農学研究科食品生物科学専攻 / (主査)教授 井上 和生, 教授 佐々木 努, 准教授 後藤 剛 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
|
18 |
Vitamin E Isoforms: Multiple Mechanisms of Action Against CarcinogenesisCampbell, Sharon E., Morani, Aashish S., Stone, William L., Krishnan, Koyamangalath, Palau, Victoria E. 01 January 2014 (has links)
Cancer is the second leading cause of death in the United States and is expected to become the primary cause of disease-related death within the next decade. There are significant country-to-country variations in cancer incidence, which suggests that nutrition and dietary factors are important to the carcinogenesis process. An increased risk of cancer is associated with obesity and a high body mass index demonstrating that nutrition has a central role in the promotion of cancer. Healthy eating habits protect against cancer, while unhealthy eating habits increase the risk of cancer. Mediterranean societies have a lower risk for many cancers than those of northern Europe and the Americas. Mediterranean diets consist of a high consumption of fruits, vegetables, grains, beans, nuts, and seeds, with olive oil as an important source of monounsaturated fat. These foods are rich in lipid soluble antioxidants such as vitamin E. Vitamin E may prevent cancer by decreasing the formation of mutagens arising from the oxidation of lipids, decreasing oxidative stress in the epithelial cells as well as modulating molecular mechanisms that influence cell death, cell cycle, and transcriptional events. Vitamin E is a major fat-soluble antioxidant and it occurs naturally as eight compounds (alpha-, beta gamma-, and delta-tocopherol or alpha-, beta-, gamma-, and delta-tocotrienol). Since the recognition of vitamin E in 1922 as an essential nutrient for reproduction, alphatocopherol has been considered the major form of vitamin E. It has the highest concentration in the plasma and has been studied more in epidemiological and clinical studies than any other form of vitamin E. Recent data suggests that other isoforms of vitamin E may be important in the control of cancer. These isoforms of vitamin E have varying anti-carcinogenic potencies. Data indicate that gamma-tocopherol may be a more effective anti-cancer agent than alpha-tocopherol. Our laboratories and others have demonstrated that tocotrienols are even more effective than tocopherols at inhibiting cell proliferation in cancer cells. Differences in apoptotic induction among the various vitamin E isoforms are reflective of different avenues of apoptotic signaling and may be tissue specific. Dietary fat has been linked to an increase in a number of cancers including colon, prostate, and breast cancer. Vitamin E modulates a number of molecular mechanisms involved in fat metabolism. These include: the peroxisome proliferator activator receptor (PPAR), arachidonic acid metabolism, de novo sphingolipid metabolism, and cholesterol metabolism. Vitamin E family members have demonstrated the potential to activate pathways involved in cell proliferation, differentiation, apoptosis, and cell cycle. This chapter reviews data that identify the molecular targets of vitamin E action against the development of cancer.
|
19 |
Azilsartan treatment improves insulin sensitivity in obese spontaneously hypertensive Koletsky rats / 自然発症肥満高血圧モデル、コレツキーラットにおけるアジルサルタンのインスリン抵抗性改善効果Zhao, Mingming 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18159号 / 医博第3879号 / 新制||医||1003(附属図書館) / 31017 / 京都大学大学院医学研究科医学専攻 / (主査)教授 横出 正之, 教授 木村 剛, 教授 柳田 素子 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
20 |
GUT SEROTONIN: REVEALING ITS ROLE IN ANTIMICROBIAL PEPTIDE PRODUCTIONKwon, Eric YH January 2018 (has links)
Serotonin (5-hydroxytryptamine [5-HT]) is a key enteric signaling molecule that is implicated in many gastrointestinal (GI) disorders, including inflammatory bowel disease (IBD). Enterochromaffin (EC) cells are a key subgroup of enteric endocrine cells and produce the majority of 5-HT via tryptophan hydroxylase 1 (Tph1) in the gut. Recently, we have identified a pivotal role of 5-HT in the pathogenesis of experimental colitis, whereby 5-HT plays as a pro-inflammatory molecule. Gut function as well as pathology rely on interactions with gut microbiota. The intestinal epithelial cells produce antimicrobial peptides (AMPs), maintaining the mucosal barrier by shaping gut microbiota composition. Among the AMPs, β-defensins are the most well investigated subtype in the colon. Aberrant β-defensin expression has been reported in association with various GI disease pathogenesis including IBD. As EC cells are dispersed throughout the intestinal epithelium, it seems possible that 5-HT can modify β-defensin production which can regulate gut inflammation by influencing gut microbial composition. Colitis was induced with dextran sulfate sodium (DSS) in Tph1+/+ and Tph1-/- (which have lower amounts of 5-HT in gut). Tph1-/- mice exhibited higher levels of β-defensin in the colon, compared with wild-type littermates post-DSS. In addition, increased expression of β-defensin in Tph1-/- mice was suppressed by 5-hydroxytryptophan (5-HTP; precursor of 5-HT) treatment. 5-HT treatment resulted in decreased human β-defensin (hBD) 1 and hBD-2 expression in HT-29 cells. Peroxisome proliferator-activated receptor gamma (PPAR-γ) is essential for maintaining β-defensin expression in the colon. GW-9662, PPAR-γ antagonist, reduced mouse β-defensin (mBD) 1 and mBD-3 (orthologue of hBD-2). Furthermore, disrupting 5-HT7 receptors, but not 5-HT3 or 5-HT4, led to enhanced expression of PPAR-γ via ERK1/2-dependent mechanism. These observations provide us with novel information on pivotal role of gut-derived 5-HT in innate immune response and highlight the potential benefits of targeting 5-HT signaling in various GI disorders such as IBD. / Thesis / Master of Science (MSc)
|
Page generated in 0.0771 seconds