Spelling suggestions: "subject:"sets.frobenius"" "subject:"ferrocenylcarbenium""
11 |
[en] SPACES OF SEQUENCE / [pt] ESPAÇOS DE SEQÜÊNCIASANDRE DA ROCHA LOPES 25 April 2007 (has links)
[pt] Estudaremos dinâmicas simbólicas associadas a alfabetos
finitos. Consideraremos seqüências bi-infinitas e espaços
com memória finita. Estudaremos propriedades invariantes
por conjugação. Analisaremos a relação entre os espaços de
seqüências e propriedades de matrizes não negativas. O
principal exemplo desta correlação é o Teorema de Perron-
Frobenius que relaciona a entropia de um espaço de
seqüências e os autovalores de uma matriz não negativa
associada ao espaço. Neste contexto, certos grafos e suas
propriedades aparecem de forma natural. / [en] We study symbolic dynamics associated to finite alphabets.
We consider bi-infinite sequences and spaces with finite
memory. We pay attention to properties which are invariant
by conjugations. We analyze the relation between spaces of
sequences and properties of non-negative matrices. The
main example is given by the Perron-Frobenius theorem
relating the entropy of a space of sequences and the
eigerrvalues of a non-negative matrix associated to the
space. In this setting, certain graphs and their
properties appear in a natural way.
|
12 |
Optimisation de vecteurs propres de Perron et applications : du référencement de pages web à la chronothérapieFercoq, Olivier 17 September 2012 (has links) (PDF)
Les moteurs de recherche jouent un rôle essentiel sur le Web. Ils rassemblent des informations sur les pages web et pour chaque requête d'un internaute, ils donnent une liste ordonnée de pages pertinentes. Ils utilisent divers algorithmes pour classer les pages en fonction de leur contenu textuel ou de la structure d'hyperlien du Web. Ici, nous nous concentrons sur les algorithmes qui utilisent cette structure d'hyperliens, comme le PageRank, HITS, SALSA et HOTS. La notion fondamentale pour tous ces algorithmes est le graphe du web. C'est le graphe orienté qui a un noeud pour chaque page web et un arc entre les noeuds i et j si il y a un hyperlien entre les pages i et j. Le problème original considéré dans cette thèse est l'optimisation du référencement des pages d'un site web donné. Il consiste à trouver une stratégie optimale de liens qui maximise une fonction scalaire d'un classement donné sous des contraintes de design. Le PageRank, HITS et SALSA classent les pages par un vecteur de Perron, c'est-à-dire qu'ils correspondent au vecteur propre principal d'une matrice à coefficients positifs. Quand on optimise le référencement, on optimise donc une fonction scalaire du vecteur propre de Perron sur un ensemble de matrices positives irréductibles. La matrice est construite à partir du graphe du web, donc commander les hyperliens revient à commander la matrice elle-même. Nous étudions d'abord un problème général d'optimisation du PageRank avec une fonction d'utilité correspondant au revenu total du site et des contraintes de design. Ce cas est d'un intérêt particulier car pour de nombreux sites la valeur du PageRank est corrélée au chiffre d'affaires. Nous avons réduit le problème d'optimisation du PageRank à des problèmes de décision markoviens dont les ensembles d'action sont définis implicitement comme étant les points extrêmes de polytopes qui ont un oracle de séparation polynomial. Nous montrons que de tels problèmes de décision markoviens sont solubles en temps polynomial et nous donnons un algorithme qui passe à l'échelle pour la résolution effective du problème d'optimisation du PageRank sur de grandes bases de données. Ensuite, nous étudions le problème général de l'optimisation d'une fonction scalaire du vecteur propre de Perron sur un ensemble de matrices positives irréductibles. Cela couvre tous les classements par vecteur de Perron, HITS et SALSA compris. Nous montrons que la matrice des dérivées partielles de la fonction objectif a un petit rang et peut être calculée par un algorithme qui a les mêmes propriétés de convergence que la méthode de la puissance utilisée pour calculer le classement. Nous donnons un algorithme d'optimisation qui couple les itérations puissance et gradient et nous prouvons sa convergence vers un point stationnaire du problème d'optimisation. En considérant HOTS comme un vecteur de Perron non linéaire, nous montrons que l'algorithme HOTS converge géométriquement et nous résolvons l'optimisation locale de HOTS. Finalement, nous étendons le domaine d'application des méthodes d'optimisation du vecteur propre et de la valeur propre de Perron à l'optimisation de la chimiothérapie, sous l'hypothèse que les cellules se comportent différemment suivant l'heure de la journée. Nous voulons profiter de cette caractéristique pour minimiser le taux de croissance des cellules cancéreuses tout en maintenant le taux de croissance des cellules saines au dessus d'un seuil de toxicité donné. L'objectif et la contrainte peuvent s'écrire comme les valeurs propres de Floquet de modèles d'EDP structurés en âge avec des coefficients périodiques, qui sont approchés par des valeurs propres de Perron dans le problème discrétisé. Nous cherchons des stratégies d'injection de médicament localement optimales par une méthode des multiplicateurs où les minimisations sans contrainte sont faites en utilisant l'algorithme couplant les itérations puissance et gradient développé dans le cadre de l'optimisation du référencement.
|
13 |
Quantum Dragon Solutions for Electron Transport through Single-Layer Planar RectangularInkoom, Godfred 08 December 2017 (has links)
When a nanostructure is coupled between two leads, the electron transmission probability as a function of energy, E, is used in the Landauer formula to obtain the electrical conductance of the nanodevice. The electron transmission probability as a function of energy, T (E), is calculated from the appropriate solution of the time independent Schrödinger equation. Recently, a large class of nanostructures called quantum dragons has been discovered. Quantum dragons are nanodevices with correlated disorder but still can have electron transmission probability unity for all energies when connected to appropriate (idealized) leads. Hence for a single channel setup, the electrical conductivity is quantized. Thus quantum dragons have the minimum electrical conductance allowed by quantum mechanics. These quantum dragons have potential applications in nanoelectronics. It is shown that for dimerized leads coupled to a simple two-slice (l = 2, m = 1) device, the matrix method gives the same expression for the electron transmission probability as renormalization group methods and as the well known Green's function method. If a nanodevice has m atoms per slice, with l slices to calculate the electron transmission probability as a function of energy via the matrix method requires the solution of the inverse of a (2 + ml) (2 + ml) matrix. This matrix to invert is of large dimensions for large m and l. Taking the inverse of such a matrix could be done numerically, but getting an exact solution may not be possible. By using the mapping technique, this reduces this large matrix to invert into a simple (l + 2) (l + 2) matrix to invert, which is easier to handle but has the same solution. By using the map-and-tune approach, quantum dragon solutions are shown to exist for single-layer planar rectangular crystals with different boundary conditions. Each chapter provides two different ways on how to find quantum dragons. This work has experimental relevance, since this could pave the way for planar rectangular nanodevices with zero electrical resistance to be found. In the presence of randomness of the single-band tight-binding parameters in the nanodevice, an interesting quantum mechanical phenomenon called Fano resonance of the electron transmission probability is shown to be observed.
|
14 |
Finding and exploiting structure in complex systems via geometric and statistical methodsGrover, Piyush 06 July 2010 (has links)
The dynamics of a complex system can be understood by analyzing the phase space structure of that system. We apply geometric and statistical techniques to two Hamiltonian systems to find and exploit structure in the phase space that helps us get qualitative and quantitative results about the phase space transport. While the structure can be revealed by the study of invariant manifolds of fixed points and periodic orbits in the first system, there do not exist any fixed points (and hence invariant manifolds) in the second system. The use of statistical (or measure theoretic) and topological methods reveals the phase space structure even in the absence of fixed points or stable and unstable invariant manifolds.
The first problem we study is the four-body problem in the context of a spacecraft in the presence of a planet and two of its moons, where we exploit the phase space structure of the problem to devise an intelligent control strategy to achieve mission objectives. We use a family of analytically derived controlled Keplerian Maps in the Patched-Three-Body framework to design fuel efficient trajectories with realistic flight times. These maps approximate the dynamics of the Planar Circular Restricted Three Body Problem (PCR3BP) and we patch solutions in two different PCR3BPs to form the desired trajectories in the four body system.
The second problem we study concerns phase space mixing in a two-dimensional time dependent Stokes flow system. Topological analysis of the braiding of periodic points has been recently used to find lower bounds on the complexity of the flow via the Thurston-Nielsen classification theorem (TNCT). We extend this framework by demonstrating that in a perturbed system with no apparent periodic points, the almost-invariant sets computed using a transfer operator approach are the natural objects on which to pin the TNCT. / Ph. D.
|
15 |
Optimisation et jeux appliqués à l'analyse statique de programmes par interprétation abstraiteAdje, Assalé 29 April 2011 (has links) (PDF)
L'interprétation abstraite est une méthode générale qui permet de déterminer de manière automatique des invariants de programmes. Cette méthode conduit à résoudre un problème de point fixe non linéaire de grande taille mais qui possède des propriétés de monotonie. Ainsi, déterminer des bornes sur les valeurs prises par une variable au cours de l'exécution d'un programme, est un problème de point fixe équivalent à un problème de jeu à deux joueurs, à somme nulle et avec options d'arrêt. Cette dernière observation explique la mise en oeuvre d'algorithmes d'itérations sur les politiques. Dans un premier temps, nous avons généralisé les domaines numériques polyédriques par un domaine numérique abstrait permettant de représenter des invariants non-linéaires. Nous avons défini une fonction sémantique abstraite sur ce domaine à partir d'une correspondance de Galois. Cependant, l'évaluation de celle-ci est aussi difficile qu'un problème d'optimisation globale non-convexe. Cela nous a amené à définir une fonction sémantique relâchée, construite à partir de la théorie de la dualité, qui sur-approxime de la fonction sémantique abstraite. La théorie de la dualité a également motivé une construction d'une itération sur les politiques dynamique pour calculer des invariants numériques. En pratique pour des programmes écrits en arithmétique affine, nous avons combiné la relaxation de Shor et l'information des fonctions de Lyapunov quadratique pour évaluer la fonction sémantique relâchée et ainsi générer des invariants numériques sous forme d'ellipsoïdes tronquées. Le deuxième travail concerne l'itération sur les politiques et le calcul du plus petit point fixe qui fournit l'invariant le plus précis. Nous avons raffiné l'itération sur les politiques afin de produire le plus petit point fixe dans le cas des jeux stochastiques. Ce raffinement repose sur des techniques de théorie de Perron-Frobenius non-linéaire. En effet, la fonction sémantique abstraite sur les intervalles peut être vue comme un opérateur de Shapley en information parfaite: elle est semidifférentiable. L'approche conjointe de la semidifférentielle et des rayons spectraux non linéaires nous a permis, dans le cas des contractions au sens large de caractériser le plus petit point fixe. Cette approche mène à un critère d'arrêt pour l'itération sur politique dans le cas des fonctions affines par morceaux contractantes au sens large. Quand le point fixe est non minimal, le problème consiste à exhiber un point fixe négatif non nul de la semidifférentielle. Ce vecteur conduit à une nouvelle politique qui fournit un point fixe strictement plus petit que le point fixe courant. Cette approche a été appliquée à quelques exemples de jeux stochastiques à paiements positifs et de vérification de programmes.
|
16 |
Matrices de Cartan, bases distinguées et systèmes de Toda / Cartan matrix, distinguished basis and Toda's systemsBrillon, Laura 27 June 2017 (has links)
Dans cette thèse, nous nous intéressons à plusieurs aspects des systèmes de racines des algèbres de Lie simples. Dans un premier temps, nous étudions les coordonnées des vecteurs propres des matrices de Cartan. Nous commençons par généraliser les travaux de physiciens qui ont montré que les masses des particules dans la théorie des champs de Toda affine sont égales aux coordonnées du vecteur propre de Perron -- Frobenius de la matrice de Cartan. Puis nous adoptons une approche différente, puisque nous utilisons des résultats de la théorie des singularités pour calculer les coordonnées des vecteurs propres de certains systèmes de racines. Dans un deuxième temps, en s'inspirant des idées de Givental, nous introduisons les matrices de Cartan q-déformées et étudions leur spectre et leurs vecteurs propres. Puis, nous proposons une q-déformation des équations de Toda et construisons des 1-solitons solutions en adaptant la méthode de Hirota, d'après les travaux de Hollowood. Enfin, notre intérêt se porte sur un ensemble de transformations agissant sur l'ensemble des bases ordonnées de racines comme le groupe de tresses. En particulier, nous étudions les bases distinguées, qui forment l'une des orbites de cette action, et des matrices que nous leur associons. / In this thesis, our goal is to study various aspects of root systems of simple Lie algebras. In the first part, we study the coordinates of the eigenvectors of the Cartan matrices. We start by generalizing the work of physicists who showed that the particle masses of the affine Toda field theory are equal to the coordinates of the Perron -- Frobenius eigenvector of the Cartan matrix. Then, we adopt another approach. Namely, using the ideas coming from the singularity theory, we compute the coordinates of the eigenvectors of some root systems. In the second part, inspired by Givental's ideas, we introduce q-deformations of Cartan matrices and we study their spectrum and their eigenvectors. Then, we propose a q-deformation of Toda's equations et compute 1-solitons solutions, using the Hirota's method and Hollowood's work. Finally, our interest is focused on a set of transformations which induce an action of the braid group on the set of ordered root basis. In particular, we study an orbit for this action, the set of distinguished basis and some associated matrices.
|
17 |
Roots of stochastic matrices and fractional matrix powersLin, Lijing January 2011 (has links)
In Markov chain models in finance and healthcare a transition matrix over a certain time interval is needed but only a transition matrix over a longer time interval may be available. The problem arises of determining a stochastic $p$th root of astochastic matrix (the given transition matrix). By exploiting the theory of functions of matrices, we develop results on the existence and characterization of stochastic $p$th roots. Our contributions include characterization of when a real matrix hasa real $p$th root, a classification of $p$th roots of a possibly singular matrix,a sufficient condition for a $p$th root of a stochastic matrix to have unit row sums,and the identification of two classes of stochastic matrices that have stochastic $p$th roots for all $p$. We also delineate a wide variety of possible configurationsas regards existence, nature (primary or nonprimary), and number of stochastic roots,and develop a necessary condition for existence of a stochastic root in terms of the spectrum of the given matrix. On the computational side, we emphasize finding an approximate stochastic root: perturb the principal root $A^{1/p}$ or the principal logarithm $\log(A)$ to the nearest stochastic matrix or the nearest intensity matrix, respectively, if they are not valid ones;minimize the residual $\normF{X^p-A}$ over all stochastic matrices $X$ and also over stochastic matrices that are primary functions of $A$. For the first two nearness problems, the global minimizers are found in the Frobenius norm. For the last two nonlinear programming problems, we derive explicit formulae for the gradient and Hessian of the objective function $\normF{X^p-A}^2$ and investigate Newton's method, a spectral projected gradient method (SPGM) and the sequential quadratic programming method to solve the problem as well as various matrices to start the iteration. Numerical experiments show that SPGM starting with the perturbed $A^{1/p}$to minimize $\normF{X^p-A}$ over all stochastic matrices is method of choice.Finally, a new algorithm is developed for computing arbitrary real powers $A^\a$ of a matrix $A\in\mathbb{C}^{n\times n}$. The algorithm starts with a Schur decomposition,takes $k$ square roots of the triangular factor $T$, evaluates an $[m/m]$ Pad\'e approximant of $(1-x)^\a$ at $I - T^$, and squares the result $k$ times. The parameters $k$ and $m$ are chosen to minimize the cost subject to achieving double precision accuracy in the evaluation of the Pad\'e approximant, making use of a result that bounds the error in the matrix Pad\'e approximant by the error in the scalar Pad\'e approximant with argument the norm of the matrix. The Pad\'e approximant is evaluated from the continued fraction representation in bottom-up fashion, which is shown to be numerically stable. In the squaring phase the diagonal and first superdiagonal are computed from explicit formulae for $T^$, yielding increased accuracy. Since the basic algorithm is designed for $\a\in(-1,1)$, a criterion for reducing an arbitrary real $\a$ to this range is developed, making use of bounds for the condition number of the $A^\a$ problem. How best to compute $A^k$ for a negative integer $k$ is also investigated. In numerical experiments the new algorithm is found to be superior in accuracy and stability to several alternatives,including the use of an eigendecomposition, a method based on the Schur--Parlett\alg\ with our new algorithm applied to the diagonal blocks and approaches based on the formula $A^\a = \exp(\a\log(A))$.
|
18 |
Évolution dans des populations structurées en classesSoares, Cíntia Dalila 05 1900 (has links)
No description available.
|
Page generated in 0.0297 seconds