• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Duality and optimality in multiobjective optimization

Bot, Radu Ioan 04 July 2003 (has links) (PDF)
The aim of this work is to make some investigations concerning duality for multiobjective optimization problems. In order to do this we study first the duality for scalar optimization problems by using the conjugacy approach. This allows us to attach three different dual problems to a primal one. We examine the relations between the optimal objective values of the duals and verify, under some appropriate assumptions, the existence of strong duality. Closely related to the strong duality we derive the optimality conditions for each of these three duals. By means of these considerations, we study the duality for two vector optimization problems, namely, a convex multiobjective problem with cone inequality constraints and a special fractional programming problem with linear inequality constraints. To each of these vector problems we associate a scalar primal and study the duality for it. The structure of both scalar duals give us an idea about how to construct a multiobjective dual. The existence of weak and strong duality is also shown. We conclude our investigations by making an analysis over different duality concepts in multiobjective optimization. To a general multiobjective problem with cone inequality constraints we introduce other six different duals for which we prove weak as well as strong duality assertions. Afterwards, we derive some inclusion results for the image sets and, respectively, for the maximal elements sets of the image sets of these problems. Moreover, we show under which conditions they become identical. A general scheme containing the relations between the six multiobjective duals and some other duals mentioned in the literature is derived. / Das Ziel dieser Arbeit ist die Durchführung einiger Untersuchungen bezüglich der Dualität für Mehrzieloptimierungsaufgaben. Zu diesem Zweck wird als erstes mit Hilfe des so genannten konjugierten Verfahrens die Dualität für skalare Optimierungsaufgaben untersucht. Das erlaubt uns zu einer primalen Aufgabe drei unterschiedliche duale Aufgaben zuzuordnen. Wir betrachten die Beziehungen zwischen den optimalen Zielfunktionswerten der drei Dualaufgaben und untersuchen die Existenz der starken Dualität unter naheliegenden Annahmen. Im Zusammenhang mit der starken Dualität leiten wir für jede dieser Dualaufgaben die Optimalitätsbedingungen her. Die obengenannten Ergebnisse werden beim Studium der Dualität für zwei Vektoroptimierungsaufgaben angewandt, und zwar für die konvexe Mehrzieloptimierungsaufgabe mit Kegel-Ungleichungen als Nebenbedingungen und für eine spezielle Quotientenoptimierungsaufgabe mit linearen Ungleichungen als Nebenbedingungen. Wir assoziieren zu jeder dieser vektoriellen Aufgaben eine skalare Aufgabe für welche die Dualität betrachtet wird. Die Formulierung der beiden skalaren Dualaufgaben führt uns zu der Konstruktion der Mehrzieloptimierungsaufgabe. Die Existenz von schwacher und starker Dualität wird bewiesen. Wir schliessen unsere Untersuchungen ab, indem wir eine Analyse von verschiedenen Dualitätskonzepten in der Mehrzieloptimierung durchführen. Zu einer allgemeinen Mehrzieloptimierungsaufgabe mit Kegel-Ungleichungen als Nebenbedingungen werden sechs verschiedene Dualaufgaben eingeführt, für die sowohl schwache als auch starke Dualitätsaussagen gezeigt werden. Danach leiten wir verschiedene Beziehungen zwischen den Bildmengen, bzw., zwischen den Mengen der maximalen Elemente dieser Bildmengen der sechs Dualaufgaben her. Dazu zeigen wir unter welchen Bedingungen werden diese Mengen identisch. Ein allgemeines Schema das die Beziehungen zwischen den sechs dualen Mehrzieloptimierungsaufgaben und andere Dualaufgaben aus der Literatur enthält, wird dargestellt.
2

Duality and optimality in multiobjective optimization

Bot, Radu Ioan 25 June 2003 (has links)
The aim of this work is to make some investigations concerning duality for multiobjective optimization problems. In order to do this we study first the duality for scalar optimization problems by using the conjugacy approach. This allows us to attach three different dual problems to a primal one. We examine the relations between the optimal objective values of the duals and verify, under some appropriate assumptions, the existence of strong duality. Closely related to the strong duality we derive the optimality conditions for each of these three duals. By means of these considerations, we study the duality for two vector optimization problems, namely, a convex multiobjective problem with cone inequality constraints and a special fractional programming problem with linear inequality constraints. To each of these vector problems we associate a scalar primal and study the duality for it. The structure of both scalar duals give us an idea about how to construct a multiobjective dual. The existence of weak and strong duality is also shown. We conclude our investigations by making an analysis over different duality concepts in multiobjective optimization. To a general multiobjective problem with cone inequality constraints we introduce other six different duals for which we prove weak as well as strong duality assertions. Afterwards, we derive some inclusion results for the image sets and, respectively, for the maximal elements sets of the image sets of these problems. Moreover, we show under which conditions they become identical. A general scheme containing the relations between the six multiobjective duals and some other duals mentioned in the literature is derived. / Das Ziel dieser Arbeit ist die Durchführung einiger Untersuchungen bezüglich der Dualität für Mehrzieloptimierungsaufgaben. Zu diesem Zweck wird als erstes mit Hilfe des so genannten konjugierten Verfahrens die Dualität für skalare Optimierungsaufgaben untersucht. Das erlaubt uns zu einer primalen Aufgabe drei unterschiedliche duale Aufgaben zuzuordnen. Wir betrachten die Beziehungen zwischen den optimalen Zielfunktionswerten der drei Dualaufgaben und untersuchen die Existenz der starken Dualität unter naheliegenden Annahmen. Im Zusammenhang mit der starken Dualität leiten wir für jede dieser Dualaufgaben die Optimalitätsbedingungen her. Die obengenannten Ergebnisse werden beim Studium der Dualität für zwei Vektoroptimierungsaufgaben angewandt, und zwar für die konvexe Mehrzieloptimierungsaufgabe mit Kegel-Ungleichungen als Nebenbedingungen und für eine spezielle Quotientenoptimierungsaufgabe mit linearen Ungleichungen als Nebenbedingungen. Wir assoziieren zu jeder dieser vektoriellen Aufgaben eine skalare Aufgabe für welche die Dualität betrachtet wird. Die Formulierung der beiden skalaren Dualaufgaben führt uns zu der Konstruktion der Mehrzieloptimierungsaufgabe. Die Existenz von schwacher und starker Dualität wird bewiesen. Wir schliessen unsere Untersuchungen ab, indem wir eine Analyse von verschiedenen Dualitätskonzepten in der Mehrzieloptimierung durchführen. Zu einer allgemeinen Mehrzieloptimierungsaufgabe mit Kegel-Ungleichungen als Nebenbedingungen werden sechs verschiedene Dualaufgaben eingeführt, für die sowohl schwache als auch starke Dualitätsaussagen gezeigt werden. Danach leiten wir verschiedene Beziehungen zwischen den Bildmengen, bzw., zwischen den Mengen der maximalen Elemente dieser Bildmengen der sechs Dualaufgaben her. Dazu zeigen wir unter welchen Bedingungen werden diese Mengen identisch. Ein allgemeines Schema das die Beziehungen zwischen den sechs dualen Mehrzieloptimierungsaufgaben und andere Dualaufgaben aus der Literatur enthält, wird dargestellt.
3

Application of the Duality Theory

Lorenz, Nicole 15 August 2012 (has links) (PDF)
The aim of this thesis is to present new results concerning duality in scalar optimization. We show how the theory can be applied to optimization problems arising in the theory of risk measures, portfolio optimization and machine learning. First we give some notations and preliminaries we need within the thesis. After that we recall how the well-known Lagrange dual problem can be derived by using the general perturbation theory and give some generalized interior point regularity conditions used in the literature. Using these facts we consider some special scalar optimization problems having a composed objective function and geometric (and cone) constraints. We derive their duals, give strong duality results and optimality condition using some regularity conditions. Thus we complete and/or extend some results in the literature especially by using the mentioned regularity conditions, which are weaker than the classical ones. We further consider a scalar optimization problem having single chance constraints and a convex objective function. We also derive its dual, give a strong duality result and further consider a special case of this problem. Thus we show how the conjugate duality theory can be used for stochastic programming problems and extend some results given in the literature. In the third chapter of this thesis we consider convex risk and deviation measures. We present some more general measures than the ones given in the literature and derive formulas for their conjugate functions. Using these we calculate some dual representation formulas for the risk and deviation measures and correct some formulas in the literature. Finally we proof some subdifferential formulas for measures and risk functions by using the facts above. The generalized deviation measures we introduced in the previous chapter can be used to formulate some portfolio optimization problems we consider in the fourth chapter. Their duals, strong duality results and optimality conditions are derived by using the general theory and the conjugate functions, respectively, given in the second and third chapter. Analogous calculations are done for a portfolio optimization problem having single chance constraints using the general theory given in the second chapter. Thus we give an application of the duality theory in the well-developed field of portfolio optimization. We close this thesis by considering a general Support Vector Machines problem and derive its dual using the conjugate duality theory. We give a strong duality result and necessary as well as sufficient optimality conditions. By considering different cost functions we get problems for Support Vector Regression and Support Vector Classification. We extend the results given in the literature by dropping the assumption of invertibility of the kernel matrix. We use a cost function that generalizes the well-known Vapnik's ε-insensitive loss and consider the optimization problems that arise by using this. We show how the general theory can be applied for a real data set, especially we predict the concrete compressive strength by using a special Support Vector Regression problem.
4

Application of the Duality Theory: New Possibilities within the Theory of Risk Measures, Portfolio Optimization and Machine Learning

Lorenz, Nicole 28 June 2012 (has links)
The aim of this thesis is to present new results concerning duality in scalar optimization. We show how the theory can be applied to optimization problems arising in the theory of risk measures, portfolio optimization and machine learning. First we give some notations and preliminaries we need within the thesis. After that we recall how the well-known Lagrange dual problem can be derived by using the general perturbation theory and give some generalized interior point regularity conditions used in the literature. Using these facts we consider some special scalar optimization problems having a composed objective function and geometric (and cone) constraints. We derive their duals, give strong duality results and optimality condition using some regularity conditions. Thus we complete and/or extend some results in the literature especially by using the mentioned regularity conditions, which are weaker than the classical ones. We further consider a scalar optimization problem having single chance constraints and a convex objective function. We also derive its dual, give a strong duality result and further consider a special case of this problem. Thus we show how the conjugate duality theory can be used for stochastic programming problems and extend some results given in the literature. In the third chapter of this thesis we consider convex risk and deviation measures. We present some more general measures than the ones given in the literature and derive formulas for their conjugate functions. Using these we calculate some dual representation formulas for the risk and deviation measures and correct some formulas in the literature. Finally we proof some subdifferential formulas for measures and risk functions by using the facts above. The generalized deviation measures we introduced in the previous chapter can be used to formulate some portfolio optimization problems we consider in the fourth chapter. Their duals, strong duality results and optimality conditions are derived by using the general theory and the conjugate functions, respectively, given in the second and third chapter. Analogous calculations are done for a portfolio optimization problem having single chance constraints using the general theory given in the second chapter. Thus we give an application of the duality theory in the well-developed field of portfolio optimization. We close this thesis by considering a general Support Vector Machines problem and derive its dual using the conjugate duality theory. We give a strong duality result and necessary as well as sufficient optimality conditions. By considering different cost functions we get problems for Support Vector Regression and Support Vector Classification. We extend the results given in the literature by dropping the assumption of invertibility of the kernel matrix. We use a cost function that generalizes the well-known Vapnik's ε-insensitive loss and consider the optimization problems that arise by using this. We show how the general theory can be applied for a real data set, especially we predict the concrete compressive strength by using a special Support Vector Regression problem.

Page generated in 0.1459 seconds