• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 3
  • Tagged with
  • 37
  • 37
  • 37
  • 20
  • 14
  • 11
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The petrology, petrography and geochemistry of anomalous borehole core sequences in the Highveld coalfield, South Africa : a case study for diatreme activity

12 November 2012 (has links)
M.Sc. (Geology) / Three anomalous borehole core sequences from the north eastern Karoo Basin are examined. The boreholes are located up to 30 km from each other and are lithostratigraphically completely atypical for the Vryheid Formation, Ecca Group, Karoo Supergroup. The lithologies of the three boreholes are intensely brecciated for the most part, while all of the surrounding boreholes reveal normal stratigraphy; their sedimentary strata are normally horizontal with no faulting present. The only known disturbances to the Vryheid Formation in the study area are the occurrence of intrusive mafic dolerite sills and dykes, which are known to have been contemporaneous with and immediately following the eruption of the Drakensburg Group basaltic lavas. The borehole core lithologies are described in detail with reference to their textural, mineralogical and petrographic characteristics. Mineral and bulk rock chemical data are presented. Several modes of origin of the brecciated core sequences are considered, with the primary hypothesis that the brecciation is due to diatreme activity. A review of diatremes and their mode of emplacement is proposed with reference to their occurrence within the Karoo Igneous Province, as some diatremes in the Karoo are associated with dolerite sill emplacement. The isolated occurrences, lithologies, petrography, alteration and geochemistry of the sequences are used to argue that the Vryheid Formation, intersected in the form of the three anomalous boreholes, was disturbed by diatreme activity, which are genetically related to the late dolerite sill emplacement into the Karoo Supergroup rocks.
32

The structural-metamorphic evolution of the marble and calc-silicate rocks of the Baklykraal quarry near Alldays, Central Zone, Limpopo Belt, South Africa.

Feldtmann, Franette 28 August 2012 (has links)
M.Sc. / Please refer to full text to view abstract
33

The early proterozoic Makganyene glacial event in South Africa : its implication in sequence stratigraphy interpretations, paleoenvironmental conditions and iron and manganese ore deposition

Polteau, Stéphane January 2005 (has links)
The Makganyene Formation forms the base of the Postmasburg Group in the Transvaal Supergroup in the Griqualand West Basin. It consists of diamictites, sandstones, banded iron-formations (BIFs), shales, siltstones and carbonates. It is generally accepted that the Makganyene Formation rests on an erosive regional unconformity throughout the Northern Cape Province. However this study demonstrates that this stratigraphic relationship is not universal, and conformable contacts have been observed. One of the principal aims of this study is to identify the nature of the Makganyene basal contact throughout the Griqualand West Basin. Intensive fieldwork was carried out from Prieska in the south, to Danielskuil in the north. In the Sishen and Hotazel areas, only borehole material was available to assess the stratigraphy. The Griquatown Fault Zone delimits the boundary between the deep basin and platform facies. The Koegas Subgroup is only present south of the Griquatown Fault Zone, where it pinches out. However, the transition Griquatown BIFs-Koegas Subgroup occurs in lacustrine deposits on the Ghaap platform (Beukes, 1983). The Griquatown Fault Zone represents the edge of the basin, which corresponds to a hinge rather than a fault zone. The Makganyene Formation rests with a conformable contact on the Koegas Subgroup south of the Griquatown Hinge Zone, and north of it the Makganyene Formation lies unconformably on the Asbestos Hills Subgroup. The Makganyene Formation displays lateral facies changes that reflect the paleogeography of the Griqualand West Basin, and the development of ice sheets/shelves. The Ghaap platform is characterised by coarse immature sand interbedded with the diamictites. The clasts in this area contain local Asbestos Hills material and no dropstones are present. Such settings are typical of sediments that are being deposited below a grounded ice mass. At the Griquatown Hinge Zone, the sandstone lenses are smaller, and the clasts consist of chert, of which a great number are striated and faceted. In the Matsap area, the presence of dropstones is strong evidence for the presence of a floating ice shelf that released its material by basal melting. Further south, the Makganyene Formation contains stromatolitic bioherms that only form if clastic contamination is minimal and therefore the ice that transported the detritus to the basin did not extend far into open sea conditions. The base of the Hotazel Formation also contains diamictite levels. Dropstones have been identified, implying a glacial origin. The Hotazel diamictites are interbedded with hyaloclastites and BIFs. The Makganyene glacial event, therefore, was not restricted to the Makganyene Formation, but also included the Ongeluk Formation, through to the base of the Hotazel Formation. Petrographic studies of the Makganyene Formation and the base of the Hotazel Formation reveal mineral assemblages that are diagnostic of early to late diagenetic crystallisation and of low-grade metamorphism not exceeding the very low green-schist facies. The facies identified display the same sense of basin deepening, from shallow high-energy Hotazel area on the Ghaap platform, to the deep basin in the Matsap area. Whole-rock geochemical analyses reveal that the elemental composition of the Makganyene Formation is very similar to that of the Asbestos Hills BIFs, which were the most important source of clastic detritus for the Makganyene Formation. However, minor amounts of carbonates of the Campbellrand Subgroup, as well as a felsic crustal input from the Archean granitoid basement, made contributions. On the Ghaap platform, the Makganyene diamictite is enriched in iron, calcium, and magnesium, while in the deeper parts of the basin the diamictites are enriched in detrital elements, such as titanium and aluminium, which occur in the fine clay component. The Hotazel diamictite displays a distinct mafic volcanic input, related to the extrusion of the Ongeluk basaltic andesites, which was incorporated in the glacial sediments. Sequence stratigraphy is based on the recognition of contacts separating the different systems tracts that compose a depositional sequence. However, because the basal contact of the Makganyene Formation has not been properly identified in previous work, no correct model has been proposed so far. Therefore correlations between the Griqualand West and the Transvaal basins, based on lithostratigraphic similarities and extrapolations of unconformities, have to be reviewed, especially since the publication of new radiometric ages contradict all previously proposed correlations. It is proposed here that the Transvaal Supergroup in the Griqualand West Basin represents a continuous depositional event that lasted about 200 Ma. The Makganyene glacial event occurred during changing conditions in the chemistries of the atmosphere and ocean, and in the continental configuration. A Snowball Earth event has been proposed as the causative process of such paleoenvironmental changes. However, evidence presented here of less dramatic glacial conditions, with areas of ice-free waters, implies an alternative to the Snowball Earth event. The paleoenvironmental changes are thought to represent a transition from an anaerobic to aerobic atmosphere, that was responsible for the global cooling of the surface of the Earth, Such a glacial event may have aided in the large-scale precipitation of iron and manganese in areas of intense upwellings.
34

Petrography, geochemistry and origin of atypical sedimentary-igneous contact relationships at the base of the Hotazel Formation around Middelplaats, Northern Cape Province, RSA

Terracin, Matthew Theodore January 2014 (has links)
In the Middelplaats mine area of the Kalahari manganese field, two drill holes (MP53 and MP54) intersected anomalously high-grade manganese ore sitting stratigraphically just above an igneous body (likely a dike or sill). Manganese ore located within approximate 5 meters of the contact with the underlying igneous rocks has been substantially metasomatically upgraded from 25 percent manganese, to over 40 percent whilst the dominant manganese species within the ore has been altered to hausmannite. This report demonstrates the metasomatic alteration is related to devolatilization (removal and/or remobilization of H₂O, CO₂ and CaO) due to contact metamorphism caused by the underlying igneous rocks. The Middelplaats mine is situated in the southwest corner of the Kalahari manganese field where the paleo basin shallows out and ends. Within the mine area, several stratigraphic units pinch out or are truncated by the side of the basin. This pinching out of lithological formations has led to the underlying Ongeluk Formation being in contact with the much younger units of the Hotazel Formation. Therefore, geochemical investigation into the nature and source of the igneous rocks was also undertaken to see if the rocks from the two drill holes were related to one another and/or the underlying Ongeluk Formation. Results of these geochemical studies have demonstrated that the Middelplaats igneous rocks (dolerites) from the two drill holes (MP53 and MP54) share a co-genetic source region. There is also reasonable geochemical evidence that the source region of the Middelplaats igneous rocks was substantially similar to the source region of the Ongeluk Formation. This may indicate that the source region of the Ongeluk Formation was reactivated at some later stage resulting in the emplacement of doleritic dikes or sills in the Middelplaats mine area. The Middelplaats igneous rocks were also found to have undergone a slight but pervasive potassic alteration; with most of the original plagioclase feldspar showing some level of replacement by a potassium enriched feldspar. Although no source for this potassic fluid was found, the devolatilization reaction within the manganese ore appears to have released some potassium into the surrounding rocks. This additional potassium may be responsible for some localized potassic alteration.
35

A geological, petrological and mineralogical study of the UG3 chromitite seam at Modikwa Platinum Mine : significance to exploration and PGE resources

Machumele, Nkateko Jones January 2014 (has links)
The UG3 at Modikwa Platinum Mine occurs as a platiniferous, planar chromitite seam. It is stratigraphically located in the Upper Critical Zone of the Eastern Bushveld Complex. Field work study comprise of underground mapping, sampling, surface mapping, borehole core logging, microprobing and microscopic investigations carried out at the Rhodes University. The UG3 at the Modikwa Platinum Mine is about 22cm thick chromitite seam underlain by a white fine grained anorthosite and overlain by a brown medium grained feldspathic pyroxenite. It is an incomplete cyclic unit consisting of chromite and feldspathic pyroxenite. The UG3 reef at the Modikwa Platinum Mine lease area represents a Platinum Group Metal resource of 300 million tons of ore at an in situ grade of 2.5g/t. Under the current market conditions the UG3 reef remains unprofitable to mine in an underground operation due to the operational cost involved. However, it has been illustrated that the UG3 chromitite seam can increase profit margins in an open pit operation provided it is mined together with the economic UG2 chromitite seam. The extraction of the UG3 as ore in the four Modikwa UG2 open pits would result in a combined operating cash profit of R330 million. The UG3 chromitite seam is platiniferous. The platinum-group minerals (PGM) range in size from less than 10μm to about 70μm. The PGMs are associated with sulphides and are both located in the interstitial silicates and are concentrated in the chromitite seam. The PGMs show a strong preference to contact boundaries of the silicate grains, the chromite grains and the sulphide phases. In some instances, they are enclosed within the chromite grains in association with sulphides. The general sulphide assemblage comprises pentlandite and chalcopyrite whereas, the PGMs assemblage comprises cooperite, ferroplatinum, laurite, FeRhS and PtRhS.
36

Petrology and mineral chemistry of sulphide ores and associated metalliferous rocks of the Gamsberg Zn-Pb deposit, South Africa : implications for ore genesis and mineral exploration

Stalder, Marcel 12 1900 (has links)
Thesis (PhD)--University of Stellenbosch, 2004. / ENGLISH ABSTRACT: The Gamsberg Zn-Pb deposit is a metamorphosed and multiply deformed sediment-hosted base metal deposit in the central Namaqua Province of South Africa. The deposit is hosted by the Bushmanland Group, a late Palaeoproterozoic (2000-1600 Ma) supracrustal succession of quartzite, metapelitic schist and interbedded metavolcanic rocks. Mineralisation occurs within the central part of the Gams Formation, a heterogeneous sequence of metamorphosed metalliferous sediments and fine-grained organic-rich shales. The ore horizon is subdivided into a lower unit of metapelite-hosted ore, an intermediate layer of phosphorite-hosted ore, and an upper unit of banded garnet-apatite ore. The ore body is enveloped by unmineralised silicate-, carbonate- and oxide-facies metalliferous rocks, which originally represented mixtures of Fe-Mn-rich hydrothermal precipitates, authigenic carbonate, and variable concentrations of detrital material. Based on mineralogical and geochemical characteristics, the metalliferous host rocks are subdivided into iron formations, coticules, Fe-Mn silicates, impure marbles and barite/Ba-rich quartzite. Minerals of the Gams Formation mostly represent solid solution between the Fe and Mn end-members of garnet, pyroxene, pyroxenoid, amphibole, olivine, spinel and ilmenite. Calcium-rich rock types are a typical feature and characterized by the occurrence of manganoan calcite, clinopyroxene, andradite-rich garnet and titanite. A successive increase in the (Mn+Ca):Fe value of rocks and minerals is evident with increasing distance from the ore horizon. Amphibole is restricted to Fe-rich ore-bearing assemblages, whereas orthopyroxene, clinopyroxene, Fe-rich pyroxenoid and olivine are present in intermediate assemblages, and Mn-rich rhodonite and pyroxmangite in the most manganiferous assemblages. These variations are mimicked by an increase in the Mn:Fe value of coexisting garnet and ilmenite group minerals with increasing distance from ore. LA-ICP-MS analyses have been used to constrain the REE patterns of garnet and apatite. In the ore-body, these minerals display a positive Eu anomaly, which is interpreted to reflect a distinct hydrothermal signature. In contrast, garnet and apatite in unmineralised metalliferous rocks display nil or a negative Eu anomaly. Primary features of the Gams Formation, such as REE patterns, the banded nature of garnet-apatite ore, the presence of diagenetic apatite nodules, and the distribution of the redox-sensitive elements Ba and Mn have been used to constrain palaeo-environmental conditions. The results indicate that metapelitehosted ore has been deposited in a stratified ocean that was characterised by anoxic bottom waters and precipitation of Fe and Zn sulphides into organic matter-rich shales. These rocks were superceded by phosphorite-hosted ore, garnet-apatite ore and metalliferous host rocks that developed in a suboxic to oxic environment. The large size of the deposit, the internal lamination of the ores and the predominance of sphalerite and barite are consistent with a vent-distal setting and precipitation of the ore-forming constituents from dense and reduced hydrothermal fluids, which originated due to reactivation of dormant growth faults. Collectively, the geological evidence indicates that Gamsberg is bridging the gap betweenthe SEDEX and BHT classifications. The relationships demonstrate that differences between these two classes of sediment-hosted Zn-Pb deposits are predominantly related to environmental conditions within localised third order basins and not to fundamental differences in ore-forming processes. / AFRIKAANSE OPSOMMING: Die Gamsberg Zn-Pb afsetting is ‘n meerfasig vervormde en gemetamorfiseerde sedimentgesetelde onedel metaal afsetting in die sentrale Namakwa Provinsie van Suid Afrika. Die afsetting word geherberg deur die Boesmanland Groep, ‘n laat Paleoproterosoïse (2000 – 1600 Ma) bokors-opeenvolging van kwartsiet, metapelitiese skis en tussengelaagde metavulkaniese gesteente. Mineralisasie word gevind in the sentrale deel van die Gams Formasie. Die Gams Formasie is ‘n heterogene opeenvolging van gemetamorfiseerde metaalhoudende sediment en fynkorrelrige organiese skalie. Die erts horison word onderverdeel in ‘n onderste laag van metapeliet-gesetelde erts, n sentrale laag van fosforiet-gesetelde erts, en ‘n boonste laag van gebande granaat-apatiet erts. Die erts-liggaam word omhuls deur ongemineraliseerde silikaat-, karbonaat- en oksied-fasies metal-ryke rotse. Hierdie gesteentes word geinterpreteer as oorspronklike mengsels van Fe-Mn-ryke hidrotermale partikels, outigeniese karbonaat, en verskeie hoeveelhede detritale materiaal. Gebaseer op mineralogiese en geochemiese kenmerke word hierdie rotse onderverdeel in ysterformasies, „coticules“, Fe-Mn silikate, onsuiwer marmer en barite/Ba-ryke kwartsiet. Minerale van die Gams Formasie form meestal soliede oplossingsreekse tussen die Fe en Mn endlede van granaat, pirokseen, piroksenoid, amfibool, olivien, spinel en ilmeniet. Kalsium-ryke rots tipes is ‘n tipiese kenmerk van die Gams Formasie en word gekenmerk deur mangaan-ryke kalsiet, klinopirokseen, andradiet-ryke granaat en sfeen. Daar word ‘n stapsgewyse vergroting van die (Mn+Ca):Fe verhouding in gesteentes en minerale gevind met toeneemende afstand van die erts horison. Amfibool is beperk tot Fe-ryke ertsdraende gesteentes, ortopirokseen, klinopirokseen, Fe-ryke piroksenoid en olivien tot intermediêre gesteentes, en Mn-ryke rodoniet en piroksmangiet tot Mn-ryke gesteentes. Hierdie variasies gaan gepaard met vergroting van die Mn:Fe verhouding in granaat en ilmeniet-groep minerale met toeneemende afstand van die erts. LA-ICP-MS analises was gebruik om die skaars-aarde element patrone van granaat en apatiet te bepaal. In die erts-liggaam wys hierdie minerale ‘n positiewe Eu anomalie, wat geinterpreteerd word as ‘n hidrotermale kenmerk. In ongemineraliseerde gasheer gesteentes wys granaat en apatiet geen of ‘n negatiewe Eu anomalie. Primêre kenmerke van die Gams Formasie, soos skaars-aarde patrone, the gebande voorkoms van granaat-apatiet erts, die teenwoordigheid van diagenetiese apatiet knolle, en die verspreiding van die redox-sensitiewe elemente Ba en Mn, was gebruik om afleidings oor die paleo-omgewing te maak. Die resultate het gewys dat metapeliet-gesetelde erts afgeset was onder anoksiese bodem water deur presipitasie van Fe en Zn sulfiedes in organiese skalie. Hierdie erts gaan oor in fosforiet-gesetelde erts, granaat-apatiet erts en metaal-ryke gasheer gesteente wat in ‘n suboksiese tot oksiese omgewing ontstaan het. Die grootte van die afsetting, die interne gelaagdheid van die erts, asook die teenwoordigheid van sfaleriet en bariet dui op ‘n distale omgewing relatief tot die hidrotermale bron en presipitasie van die ertsuit digte en gereduseerde hidrotermale vloeistowwe, wat ontstaan het deur die heraktiveering van rustende groeiverskuiwings. Gesaamentlik bewys die geologiese kenmerke van Gamsberg dat gemetamorfiseerde SEDEX en Broken Hill-tipe mineralisasie binne die perke van ‘n enkele afsetting kan voorkom. Die geologiese verhoudings dui aan dat verskille tussen hierdie twee tipes van sedimentgesetelde afsettings meestal veroorsaak word deur omgewings-toestande binne in gelokaliseerde derde orde komme en nie deur fundamentele verskille in ertsvormende prosesse nie.
37

Carbonate alteration of serpentinite in the Murchison Greenstone Belt, Kaapvaal craton : implications for gold mineralization.

Madisha, Moropa Ebenezer 15 August 2012 (has links)
M.Sc. / Please refer to full text to view abstract

Page generated in 0.0754 seconds