• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 6
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 16
  • 12
  • 12
  • 9
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Solving Optimal Control Time-dependent Diffusion-convection-reaction Equations By Space Time Discretizations

Seymen, Zahire 01 February 2013 (has links) (PDF)
Optimal control problems (OCPs) governed by convection dominated diffusion-convection-reaction equations arise in many science and engineering applications such as shape optimization of the technological devices, identification of parameters in environmental processes and flow control problems. A characteristic feature of convection dominated optimization problems is the presence of sharp layers. In this case, the Galerkin finite element method performs poorly and leads to oscillatory solutions. Hence, these problems require stabilization techniques to resolve boundary and interior layers accurately. The Streamline Upwind Petrov-Galerkin (SUPG) method is one of the most popular stabilization technique for solving convection dominated OCPs. The focus of this thesis is the application and analysis of the SUPG method for distributed and boundary OCPs governed by evolutionary diffusion-convection-reaction equations. There are two approaches for solving these problems: optimize-then-discretize and discretize-then-optimize. For the optimize-then-discretize method, the time-dependent OCPs is transformed to a biharmonic equation, where space and time are treated equally. The resulting optimality system is solved by the finite element package COMSOL. For the discretize-then-optimize approach, we have used the so called allv at-once method, where the fully discrete optimality system is solved as a saddle point problem at once for all time steps. A priori error bounds are derived for the state, adjoint, and controls by applying linear finite element discretization with SUPG method in space and using backward Euler, Crank- Nicolson and semi-implicit methods in time. The stabilization parameter is chosen for the convection dominated problem so that the error bounds are balanced to obtain L2 error estimates. Numerical examples with and without control constraints for distributed and boundary control problems confirm the effectiveness of both approaches and confirm a priori error estimates for the discretize-then-optimize approach.
22

Integrated Sinc Method for Composite and Hybrid Structures

Slemp, Wesley Campbell Hop 07 July 2010 (has links)
Composite materials and hybrid materials such as fiber-metal laminates, and functionally graded materials are increasingly common in application in aerospace structures. However, adhesive bonding of dissimilar materials makes these materials susceptible to delamination. The use of integrated Sinc methods for predicting interlaminar failure in laminated composites and hybrid material systems was examined. Because the Sinc methods first approximate the highest-order derivative in the governing equation, the in-plane derivatives of in-plane strain needed to obtain interlaminar stresses by integration of the equilibrium equations of 3D elasticity are known without post-processing. Interlaminar stresses obtained with the Sinc method based on Interpolation of Highest derivative were compared for the first-order and third-order shear deformable theories, the refined zigzag beam theory and the higher-order shear and normal deformable beam theory. The results indicate that the interlaminar stresses by the zigzag theory compare well with those obtained by a 3D finite element analysis, while the traditional equivalent single layer theories perform well for some laminates. The philosophy of the Sinc method based on Interpolation of Highest Derivative was extended to create a novel weak form based approach called the Integrated Local Petrov-Galerkin Sinc Method. The Integrated Local Petrov-Galerkin Sinc Method is easily utilized for boundary-value problem on non-rectangular domains as demonstrated for analysis of elastic and elastic-plastic plane-stress panels with elliptical notches. The numerical results showed excellent accuracy compared to similar results obtained with the finite element method. The Integrated Local Petrov-Galerkin Sinc Method was used to analyze interlaminar debonding of composite and fiber-metal laminated beams. A double-cantilever beam and a fixed-ratio mixed mode beam were analyzed using the Integrated Local Petrov-Galerkin Sinc Method and the results were shown to correlate well with those by the finite element method. An adaptive Sinc point distribution technique was implemented for the delamination analysis which significantly improved the methods accuracy for the present problem. Delamination of a GLARE, plane-strain specimen was also analyzed using the Integrated Local Petrov-Galerkin Sinc Method. The results correlate well with 2D, plane-strain analysis by the finite element method, including interlaminar stresses obtained by through-the-thickness integration of the equilibrium equations of 3D elasticity. / Ph. D.
23

Stabilized finite element methods for convection-diffusion-reaction, helmholtz and stokes problems

Nadukandi, Prashanth 13 May 2011 (has links)
We present three new stabilized finite element (FE) based Petrov-Galerkin methods for the convection-diffusionreaction (CDR), the Helmholtz and the Stokes problems, respectively. The work embarks upon a priori analysis of a consistency recovery procedure for some stabilization methods belonging to the Petrov- Galerkin framework. It was ound that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory numerical methods is not appropriate when consistency recovery methods are employed. Hence, with respect to convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution Petrov-Galerkin (HRPG) method for the CDR problem. The structure of the method in 1 D is identical to the consistent approximate upwind (CAU) Petrov-Galerkin method [doi: 10.1016/0045-7825(88)90108-9] except for the definitions of he stabilization parameters. Such a structure may also be attained via the Finite Calculus (FIC) procedure [doi: 10.1 016/S0045-7825(97)00119-9] by an appropriate definition of the characteristic length. The prefix high-resolution is used here in the sense popularized by Harten, i.e. second order accuracy for smooth/regular regimes and good shock-capturing in non-regular re9jmes. The design procedure in 1 D embarks on the problem of circumventing the Gibbs phenomenon observed in L projections. Next, we study the conditions on the stabilization parameters to ircumvent the global oscillations due to the convective term. A conjuncture of the two results is made to deal with the problem at hand that is usually plagued by Gibbs, global and dispersive oscillations in the numerical solution. A multi dimensional extension of the HRPG method using multi-linear block finite elements is also presented. Next, we propose a higher-order compact scheme (involving two parameters) on structured meshes for the Helmholtz equation. Making the parameters equal, we recover the alpha-interpolation of the Galerkin finite element method (FEM) and the classical central finite difference method. In 1 D this scheme is identical to the alpha-interpolation method [doi: 10.1 016/0771 -050X(82)90002-X] and in 2D choosing the value 0.5 for both the parameters, we recover he generalized fourth-order compact Pade approximation [doi: 10.1 006/jcph.1995.1134, doi: 10.1016/S0045- 7825(98)00023-1] (therein using the parameter V = 2). We follow [doi: 10.1 016/0045-7825(95)00890-X] for the analysis of this scheme and its performance on square meshes is compared with that of the quasi-stabilized FEM [doi: 10.1016/0045-7825(95)00890-X]. Generic expressions for the parameters are given that guarantees a dispersion accuracy of sixth-order should the parameters be distinct and fourth-order should they be equal. In the later case, an expression for the parameter is given that minimizes the maximum relative phase error in 2D. A Petrov-Galerkin ormulation that yields the aforesaid scheme on structured meshes is also presented. Convergence studies of the error in the L2 norm, the H1 semi-norm and the I ~ Euclidean norm is done and the pollution effect is found to be small. / Presentamos tres nuevos metodos estabilizados de tipo Petrov- Galerkin basado en elementos finitos (FE) para los problemas de convecci6n-difusi6n- reacci6n (CDR), de Helmholtz y de Stokes, respectivamente. El trabajo comienza con un analisis a priori de un metodo de recuperaci6n de la consistencia de algunos metodos de estabilizaci6n que pertenecen al marco de Petrov-Galerkin. Hallamos que el uso de algunas de las practicas estandar (por ejemplo, la eoria de Matriz-M) para el diserio de metodos numericos esencialmente no oscilatorios no es apropiado cuando utilizamos los metodos de recu eraci6n de la consistencia. Por 10 tanto, con res ecto a la estabilizaci6n de conveccion, no preferimos tales metodos de recuperacion . A continuacion, presentamos el diser'io de un metodo de Petrov-Galerkin de alta-resolucion (HRPG) para el problema CDR. La estructura del metodo en 10 es identico al metodo CAU [doi: 10.1016/0045-7825(88)90108-9] excepto en la definicion de los parametros de estabilizacion. Esta estructura tambien se puede obtener a traves de la formulacion del calculo finito (FIC) [doi: 10.1 016/S0045- 7825(97)00119-9] usando una definicion adecuada de la longitud caracteristica. El prefijo de "alta-resolucion" se utiliza aqui en el sentido popularizado por Harten, es decir, tener una solucion con una precision de segundo orden en los regimenes suaves y ser esencialmente no oscilatoria en los regimenes no regulares. El diser'io en 10 se embarca en el problema de eludir el fenomeno de Gibbs observado en las proyecciones de tipo L2. A continuacion, estudiamos las condiciones de los parametros de estabilizacion para evitar las oscilaciones globales debido al ermino convectivo. Combinamos los dos resultados (una conjetura) para tratar el problema COR, cuya solucion numerica sufre de oscilaciones numericas del tipo global, Gibbs y dispersiva. Tambien presentamos una extension multidimensional del metodo HRPG utilizando los elementos finitos multi-lineales. fa. continuacion, proponemos un esquema compacto de orden superior (que incluye dos parametros) en mallas estructuradas para la ecuacion de Helmholtz. Haciendo igual ambos parametros, se recupera la interpolacion lineal del metodo de elementos finitos (FEM) de tipo Galerkin y el clasico metodo de diferencias finitas centradas. En 10 este esquema es identico al metodo AIM [doi: 10.1 016/0771 -050X(82)90002-X] y en 20 eligiendo el valor de 0,5 para ambos parametros, se recupera el esquema compacto de cuarto orden de Pade generalizada en [doi: 10.1 006/jcph.1 995.1134, doi: 10.1 016/S0045-7825(98)00023-1] (con el parametro V = 2). Seguimos [doi: 10.1 016/0045-7825(95)00890-X] para el analisis de este esquema y comparamos su rendimiento en las mallas uniformes con el de "FEM cuasi-estabilizado" (QSFEM) [doi: 10.1016/0045-7825 (95) 00890-X]. Presentamos expresiones genericas de los para metros que garantiza una precision dispersiva de sexto orden si ambos parametros son distintos y de cuarto orden en caso de ser iguales. En este ultimo caso, presentamos la expresion del parametro que minimiza el error maxima de fase relativa en 20. Tambien proponemos una formulacion de tipo Petrov-Galerkin ~ue recupera los esquemas antes mencionados en mallas estructuradas. Presentamos estudios de convergencia del error en la norma de tipo L2, la semi-norma de tipo H1 y la norma Euclidiana tipo I~ y mostramos que la perdida de estabilidad del operador de Helmholtz ("pollution effect") es incluso pequer'ia para grandes numeros de onda. Por ultimo, presentamos una coleccion de metodos FE estabilizado para el problema de Stokes desarrollados a raves del metodo FIC de primer orden y de segundo orden. Mostramos que varios metodos FE de estabilizacion existentes y conocidos como el metodo de penalizacion, el metodo de Galerkin de minimos cuadrados (GLS) [doi: 10.1016/0045-7825(86)90025-3], el metodo PGP (estabilizado a traves de la proyeccion del gradiente de presion) [doi: 10.1 016/S0045-7825(96)01154-1] Y el metodo OSS (estabilizado a traves de las sub-escalas ortogonales) [doi: 10.1016/S0045-7825(00)00254-1] se recuperan del marco general de FIC. Oesarrollamos una nueva familia de metodos FE, en adelante denominado como PLS (estabilizado a traves del Laplaciano de presion) con las formas no lineales y consistentes de los parametros de estabilizacion. Una caracteristica distintiva de la familia de los metodos PLS es que son no lineales y basados en el residuo, es decir, los terminos de estabilizacion dependera de los residuos discretos del momento y/o las ecuaciones de incompresibilidad. Oiscutimos las ventajas y desventajas de estas tecnicas de estabilizaci6n y presentamos varios ejemplos de aplicacion
24

Adaptive Discontinuous Petrov-Galerkin Finite-Element-Methods

Hellwig, Friederike 12 June 2019 (has links)
Die vorliegende Arbeit "Adaptive Discontinuous Petrov-Galerkin Finite-Element-Methods" beweist optimale Konvergenzraten für vier diskontinuierliche Petrov-Galerkin (dPG) Finite-Elemente-Methoden für das Poisson-Modell-Problem für genügend feine Anfangstriangulierung. Sie zeigt dazu die Äquivalenz dieser vier Methoden zu zwei anderen Klassen von Methoden, den reduzierten gemischten Methoden und den verallgemeinerten Least-Squares-Methoden. Die erste Klasse benutzt ein gemischtes System aus konformen Courant- und nichtkonformen Crouzeix-Raviart-Finite-Elemente-Funktionen. Die zweite Klasse verallgemeinert die Standard-Least-Squares-Methoden durch eine Mittelpunktsquadratur und Gewichtsfunktionen. Diese Arbeit verallgemeinert ein Resultat aus [Carstensen, Bringmann, Hellwig, Wriggers 2018], indem die vier dPG-Methoden simultan als Spezialfälle dieser zwei Klassen charakterisiert werden. Sie entwickelt alternative Fehlerschätzer für beide Methoden und beweist deren Zuverlässigkeit und Effizienz. Ein Hauptresultat der Arbeit ist der Beweis optimaler Konvergenzraten der adaptiven Methoden durch Beweis der Axiome aus [Carstensen, Feischl, Page, Praetorius 2014]. Daraus folgen dann insbesondere die optimalen Konvergenzraten der vier dPG-Methoden. Numerische Experimente bestätigen diese optimalen Konvergenzraten für beide Klassen von Methoden. Außerdem ergänzen sie die Theorie durch ausführliche Vergleiche beider Methoden untereinander und mit den äquivalenten dPG-Methoden. / The thesis "Adaptive Discontinuous Petrov-Galerkin Finite-Element-Methods" proves optimal convergence rates for four lowest-order discontinuous Petrov-Galerkin methods for the Poisson model problem for a sufficiently small initial mesh-size in two different ways by equivalences to two other non-standard classes of finite element methods, the reduced mixed and the weighted Least-Squares method. The first is a mixed system of equations with first-order conforming Courant and nonconforming Crouzeix-Raviart functions. The second is a generalized Least-Squares formulation with a midpoint quadrature rule and weight functions. The thesis generalizes a result on the primal discontinuous Petrov-Galerkin method from [Carstensen, Bringmann, Hellwig, Wriggers 2018] and characterizes all four discontinuous Petrov-Galerkin methods simultaneously as particular instances of these methods. It establishes alternative reliable and efficient error estimators for both methods. A main accomplishment of this thesis is the proof of optimal convergence rates of the adaptive schemes in the axiomatic framework [Carstensen, Feischl, Page, Praetorius 2014]. The optimal convergence rates of the four discontinuous Petrov-Galerkin methods then follow as special cases from this rate-optimality. Numerical experiments verify the optimal convergence rates of both types of methods for different choices of parameters. Moreover, they complement the theory by a thorough comparison of both methods among each other and with their equivalent discontinuous Petrov-Galerkin schemes.
25

Analysis of Rotating Beam Problems using Meshless Methods and Finite Element Methods

Panchore, Vijay January 2016 (has links) (PDF)
A partial differential equation in space and time represents the physics of rotating beams. Mostly, the numerical solution of such an equation is an available option as analytical solutions are not feasible even for a uniform rotating beam. Although the numerical solutions can be obtained with a number of combinations (in space and time), one tries to seek for a better alternative. In this work, various numerical techniques are applied to the rotating beam problems: finite element method, meshless methods, and B-spline finite element methods. These methods are applied to the governing differential equations of a rotating Euler-Bernoulli beam, rotating Timoshenko beam, rotating Rayleigh beam, and cracked Euler-Bernoulli beam. This work provides some elegant alternatives to the solutions available in the literature, which are more efficient than the existing methods: the p-version of finite element in time for obtaining the time response of periodic ordinary differential equations governing helicopter rotor blade dynamics, the symmetric matrix formulation for a rotating Euler-Bernoulli beam free vibration problem using the Galerkin method, and solution for the Timoshenko beam governing differential equation for free vibration using the meshless methods. Also, the cracked Euler-Bernoulli beam free vibration problem is solved where the importance of higher order polynomial approximation is shown. Finally, the overall response of rotating blades subjected to aerodynamic forcing is obtained in uncoupled trim where the response is independent of the overall helicopter configuration. Stability analysis for the rotor blade in hover and forward flight is also performed using Floquet theory for periodic differential equations.
26

Χρήση μεθόδων συνοριακών στοιχείων και τοπικών ολοκληρωτικών εξισώσεων χωρίς διακριτοποίηση για την αριθμητική επίλυση προβλημάτων κυματικής διάδοσης σε εφαρμογές μη-καταστροφικού ελέγχου

Βαβουράκης, Βασίλειος 18 August 2008 (has links)
Ο στόχος της παρούσας διδακτορικής διατριβής είναι διττός: η ανάπτυξη και η εφαρμογή αριθμητικών τεχνικών για την επίλυση προβλημάτων που εμπίπτουν στην περιοχή του Μη-Καταστροφικού Ελέγχου. Συγκεκριμένα αναπτύχθηκαν η Μέθοδος των Συνοριακών Στοιχείων (ΜΣΣ) και η Μέθοδος των Τοπικών Ολοκληρωτικών Εξισώσεων χωρίς Διακριτοποίηση για την αριθμητική ανάλυση στατικών και μεταβατικών προβλημάτων στο πεδίο της ελαστικότητας και της αλληλεπίδρασης ελαστικού με ακουστικό μέσο στις δύο διαστάσεις. Σημαντικό μέρος της διδακτορικής διατριβής αποτέλεσε η ανάπτυξη προγράμματος ηλεκτρονικού υπολογιστή, το οποίο επιλύει τα προβλήματα στα οποία πραγματεύεται το παρόν σύγγραμμα. Η διδακτορική διατριβή αποτελείται από τρεις ενότητες. Στην πρώτη ενότητα γίνεται πλήρης περιγραφή της απαραίτητης θεωρίας για την κάλυψη και κατανόηση των αριθμητικών ΜΣΣ αλλά και των Τοπικών Μεθόδων χωρίς Διακριτοποίηση (ΤΜχΔ). Στη δεύτερη ενότητα εφαρμόζονται οι προαναφερθείσες αριθμητικές μέθοδοι για την επίλυση στατικών και δυναμικών (στο πεδίο συχνοτήτων) διδιάστατων προβλημάτων, ώστε να πιστοποιηθεί η ακρίβεια και η αξιοπιστία των εν λόγω μεθοδολογιών. Τέλος, στην τρίτη ενότητα οι αριθμητικές ΜΣΣ και ΤΜχΔ εφαρμόζονται για την επίλυση προβλημάτων κυματικής διάδοσης που εμπίπτουν στο πεδίο του Μη-Καταστροφικού Ελέγχου. Πιο συγκεκριμένα μελετήθηκε η κυματική διάδοση σε ελεύθερες επίπεδες πλάκες και σε κυλινδρικές δεξαμενές αποθήκευσης υγρών καυσίμων. / The aim of this doctoral thesis is twofold: the development and implementation of numerical techniques for solving wave propagation problems in Non-Destructive Testing applications. Particularly, the Boundary Element Method (BEM) and the Local Boyndary Integral Equation Method are developed, so as to numerically solve static and transient problems on the field of elasticity and fluid-structure interaction in two dimensions. A major part of the present research is the construction of a computer program for solving such kind of problems. This textbook consists of three sections. In the first section, a thorough description on the theory of the BEM and the Local Meshless Methods (LMM) is done. The second section is dedicated for the numerical implementation of the BEM and LMM for solving steady state and time-harmonic two dimensional elastic and acoustic problems, in order to verify the accuracy and the ability of the proposed methodologies to solve the above-mentioned problems. Finally in the third section, the wave propagation problems of traction-free plates and cylindrical fuel storage tanks is studied, from the perspective of Non-Destructive Testing. The numerical methods of BEM and LMM are implemented, as well as spectral methods are utilized, for drawing useful conclusions on the wave propagation phenomena.
27

Stabilization Schemes for Convection Dominated Scalar Problems with Different Time Discretizations in Time dependent Domains

Srivastava, Shweta January 2017 (has links) (PDF)
Problems governed by partial differential equations (PDEs) in deformable domains, t Rd; d = 2; 3; are of fundamental importance in science and engineering. They are of particular relevance in the design of many engineering systems e.g., aircrafts and bridges as well as to the analysis of several biological phenomena e.g., blood ow in arteries. However, developing numerical scheme for such problems is still very challenging even when the deformation of the boundary of domain is prescribed a priori. Possibility of excessive mesh distortion is one of the major challenge when solving such problems with numerical methods using boundary tted meshes. The arbitrary Lagrangian- Eulerian (ALE) approach is a way to overcome this difficulty. Numerical simulations of convection-dominated problems have for long been the subject to many researchers. Galerkin formulations, which yield the best approximations for differential equations with high diffusivity, tend to induce spurious oscillations in the numerical solution of convection dominated equations. Though such spurious oscillations can be avoided by adaptive meshing, which is computationally very expensive on ne grids. Alternatively, stabilization methods can be used to suppress the spurious oscillations. In this work, the considered equation is designed within the framework of ALE formulation. In the first part, Streamline Upwind Petrov-Galerkin (SUPG) finite element method with conservative ALE formulation is proposed. Further, the first order backward Euler and the second order Crank-Nicolson methods are used for the temporal discretization. It is shown that the stability of the semi-discrete (continuous in time) ALE-SUPG equation is independent of the mesh velocity, whereas the stability of the fully discrete problem is unconditionally stable for implicit Euler method and is only conditionally stable for Crank-Nicolson time discretization. Numerical results are presented to support the stability estimates and to show the influence of the SUPG stabilization parameter in a time-dependent domain. In the second part of this work, SUPG stabilization method with non-conservative ALE formulation is proposed. The implicit Euler, Crank-Nicolson and backward difference methods are used for the temporal discretization. At the discrete level in time, the ALE map influences the stability of the corresponding discrete scheme with different time discretizations, and it leads to schemes where conservative and non-conservative formulations are no longer equivalent. The stability of the fully discrete scheme, irrespective of the temporal discretization, is only conditionally stable. It is observed from numerical results that the Crank-Nicolson scheme induces high oscillations in the numerical solution compare to the implicit Euler and the backward difference time discretiza-tions. Moreover, the backward difference scheme is more sensitive to the stabilization parameter k than the other time discretizations. Further, the difference between the solutions obtained with the conservative and non-conservative ALE forms is significant when the deformation of domain is large, whereas it is negligible in domains with small deformation. Finally, the local projection stabilization (LPS) and the higher order dG time stepping scheme are studied for convection dominated problems. The analysis is based on the quadrature formula for approximating the integrals in time. We considered the exact integration in time, which is impractical to implement and the Radau quadrature in time, which can be used in practice. The stability and error estimates are shown for the mathematical basis of considered numerical scheme with both time integration methods. The numerical analysis reveals that the proposed stabilized scheme with exact integration in time is unconditionally stable, whereas Radau quadrature in time is conditionally stable with time-step restriction depending on the ALE map. The theoretical estimates are illustrated with appropriate numerical examples with distinct features. The second order dG(1) time discretization is unconditionally stable while Crank-Nicolson gives the conditional stable estimates only. The convergence order for dG(1) is two which supports the error estimate.

Page generated in 0.0446 seconds